Heads up: I am not very familiar with working with threadpool, which might be obvious from the following code. I am under the impression that I could push many values into this queue and then it would wait for one thread to complete and then move onto the next and the system would handle the synchronization of how many threads to be running.
I am trying to use ThreadPool::QueueUserWorkItem(waitcallback, num) where the value of num is iterated up to a dynamic value depending on some prior algorithm. The problem I am coming across is the program crashes when it gets too high.
WaitCallback^ wcb = gcnew WaitCallBack(this, &createImage);
for(int i = 0; i < numBlocks; i++)
{
ThreadPool::QueueUserWorkItem(wcb, i);
}
I get the message "Runtime Error! This application has requested the Runtime to terminate it in an unusual way. Please contact the application's support team for more information."
My most resent run through had numBlocks = 644.
It's hard to say what caused the program to crash. Most likely, an exception was thrown in one of the threads, and that brought the program down. You'll have to determine where in your code the exception was thrown.
As you know, ThreadPool::QueueUserWorkItem queues an item to be processed by the threadpool. But there can be multiple threads processing items from that queue. For example, you could have 20 pool threads, with 15 of them processing the work items that you queued.
If you really have that many items to process and you want them done one at a time, why not just queue one thread to do them one at a time. I've never done managed C++, so I won't try to write an example with it. But perhaps you can translate this C# code:
void ProcessInBackground(object state)
{
int numBlocks = (int)state;
for (int i = 0; i < numBlocks; ++i)
{
createImage(i);
}
}
And then you can call it with:
ThreadPool::QueueUserWorkItem(ProcessInBackground, numBlocks);
That creates a single thread that will process the items in order.
I suspect you can convert that to managed C++ fairly easily.
Related
I am working on a small microfinance application that processes financial transactions, the frequency of these transaction are quite high, which is why I am planning to make it a multi-threaded application that can process multiple transactions in parallel.
I have already designed all the workers that are thread safe,
what I need help for is how to manage these threads. here are some of my options
1.make a specified number of thread pool threads at startup and keep them running like in a infinite loop where they could keep looking for new transactions and if any are found start processing
example code:
void Start_Job(){
for (int l_ThreadId = 0; l_ThreadId < PaymentNoOfWorkerThread; l_ThreadId++)
{
ThreadPool.QueueUserWorkItem(Execute, (object)l_TrackingId);
}
}
void Execute(object l_TrackingId)
{
while(true)
{
var new_txns = Get_New_Txns(); //get new txns if any returns a queue
while(new_txns.count > 0 ){
process_txn(new_txns.Dequeue())
}
Thread.Sleep(some_time);
}
}
2.look for new transactions and assign a thread pool thread for each transaction (my understanding that these threads would be reused after their execution is complete for new txns)
example code:
void Start_Job(){
while(true){
var new_txns = Get_New_Txns(); //get new txns if any returns a queue
for (int l_ThreadId = 0; l_ThreadId < new_txns.count; l_ThreadId++)
{
ThreadPool.QueueUserWorkItem(Execute, (object)new_txn.Dequeue());
}
}
Thread.Sleep(some_time);
}
void Execute(object Txn)
{
process_txn(txn);
}
3.do the above but with tasks.
which option would be most efficient and well suited for my application,
thanks in advance :)
ThreadPool.QueueUserWorkItem is an older API and you shouldn't be using it directly
anymore. Tasks is the way to go and Thread pool is managed automatically for you.
What may suite your application would depend on what happens in process_txn and is subjective, so this is very generic guideline:
If process_txn is a compute bound operation: for example it performs only CPU bound calculations, then you may look at the Task Parallel Library. It will help you use the CPU cores more efficiently.
If process_txn is less of CPU and more IO bound operations: meaning if it may read/write from files/database or connects to some other remote service, then what you should look at is asynchronous programming and make sure your IO operations are all asynchronous which means your threads are never blocked on IO. This will help your service to be more scalable. Also depending on what your queue is, see if you can await on the queue asynchronously, so that none of your application threads are blocked just waiting on the queue.
I am having a hard time trying to swallow a concept of multithreaded render in DX12.
According to MSDN one must write draw commands into direct command lists (preferably using bundles) and then submit those lists to a command queue.
It is also said that one can have more than one command queue for direct command lists. But it is unclear for me what is the purpose of doing so.
I take the full profit of multithreading by building command lists in parallel threads, don't i? If so, why would i want to have more than one command queue associated with the device?
I suspect that improper management of command queues can lead to enormous troubles with performance in later stages of rendering library development.
The main benefit to directx 12 is that execution of commands is almost purely asynchronous. Meaning when you call ID3D12CommandQueue::ExecuteCommandLists it will kick off work of the commands passed in. This brings another point however. A common misconception is that rendering is somehow multithreaded now, and this is just simply not true. All work is still executed on the GPU. However command list recording is what is done on several threads, as you will create a ID3D12GraphicsCommandList object for each thread needing it.
An example:
DrawObject DrawObjects[10];
ID3D12CommandQueue* GCommandQueue = ...
void RenderThread1()
{
ID3D12GraphicsCommandList* clForThread1 = ...
for (int i = 0; i < 5; i++)
clForThread1->RecordDraw(DrawObjects[i]);
}
void RenderThread2()
{
ID3D12GraphicsCommandList* clForThread2 = ...
for (int i = 5; i < 10; i++)
clForThread2->RecordDraw(DrawObjects[i]);
}
void ExecuteCommands()
{
ID3D12GraphicsCommandList* cl[2] = { clForThread1, clForThread2 };
GCommandQueue->ExecuteCommandLists(2, cl);
GCommandQueue->Signal(...)
}
This example is a very rough use case, but that is the general idea. That you can record objects of your scene on different threads to remove the CPU overhead of recording the commands.
Another useful thing however is that with this setup, you can kick off rendering tasks and start recording another.
An example
void Render()
{
ID3D12GraphicsCommandList* cl = ...
cl->DrawObjectsInTheScene(...);
CommandQueue->Execute(cl); // Just send it to the gpu to start rendering all the objects in the scene
// And since we have started the gpu work on rendering the scene, we can move to render our post processing while the scene is being rendered on the gpu
ID3D12GraphicsCommandList* cl2 = ...
cl2->SetBloomPipelineState(...);
cl2->SetResources(...);
cl2->DrawOnScreenQuad();
}
The advantage here over directx 11 or opengl is that those apis potentially just sit there and record and record, and possibly don't send their commands until Present() is called, which forces the cpu to wait, and incurring an overhead.
In my code I have a loop, inside this loop I send several requests to a remote webservice. WS providers said: "The webservice can host at most n threads", so i need to cap my code since I can't send n+1 threads.
If I've to send m threads I would that first n threads will be executed immediately and as soon one of these is completed a new thread (one of the remaining m-n threads) will be executed and so on, until all m threads are executed.
I have thinked of a Thread Pool and explicit setting of the max thread number to n. Is this enough?
For this I would avoid the use of multiple threads. Instead, wrapping the entire loop up which can be run on a single thread. However, if you do want to launch multiple threads using the/a thread pool then I would use the Semaphore class to facilitate the required thread limit; here's how...
A semaphore is like a mean night club bouncer, it has been provide a club capacity and is not allowed to exceed this limit. Once the club is full, no one else can enter... A queue builds up outside. Then as one person leaves another can enter (analogy thanks to J. Albahari).
A Semaphore with a value of one is equivalent to a Mutex or Lock except that the Semaphore has no owner so that it is thread ignorant. Any thread can call Release on a Semaphore whereas with a Mutex/Lock only the thread that obtained the Mutex/Lock can release it.
Now, for your case we are able to use Semaphores to limit concurrency and prevent too many threads from executing a particular piece of code at once. In the following example five threads try to enter a night club that only allows entry to three...
class BadAssClub
{
static SemaphoreSlim sem = new SemaphoreSlim(3);
static void Main()
{
for (int i = 1; i <= 5; i++)
new Thread(Enter).Start(i);
}
// Enfore only three threads running this method at once.
static void Enter(int i)
{
try
{
Console.WriteLine(i + " wants to enter.");
sem.Wait();
Console.WriteLine(i + " is in!");
Thread.Sleep(1000 * (int)i);
Console.WriteLine(i + " is leaving...");
}
finally
{
sem.Release();
}
}
}
I hope this helps.
Edit. You can also use the ThreadPool.SetMaxThreads Method. This method restricts the number of threads allowed to run in the thread pool. But it does this 'globally' for the thread pool itself. This means that if you are running SQL queries or other methods in libraries that you application uses then new threads will not be spun-up due to this blocking. This may not be relevant to you, in which case use the SetMaxThreads method. If you want to block for a particular method however, it is safer to use Semphores.
I'm new to multithread programming. I wrote this simple multi thread program with Qt. But when I run this program it freezes my GUI and when I click inside my widow, it responds that your program is not responding .
Here is my widget class. My thread starts to count an integer number and emits it when this number is dividable by 1000. In my widget simply I catch this number with signal-slot mechanism and show it in a label and a progress bar.
Widget::Widget(QWidget *parent) :
QWidget(parent),
ui(new Ui::Widget)
{
ui->setupUi(this);
MyThread *th = new MyThread;
connect( th, SIGNAL(num(int)), this, SLOT(setNum(int)));
th->start();
}
void Widget::setNum(int n)
{
ui->label->setNum( n);
ui->progressBar->setValue(n%101);
}
and here is my thread run() function :
void MyThread::run()
{
for( int i = 0; i < 10000000; i++){
if( i % 1000 == 0)
emit num(i);
}
}
thanks!
The problem is with your thread code producing an event storm. The loop counts very fast -- so fast, that the fact that you emit a signal every 1000 iterations is pretty much immaterial. On modern CPUs, doing a 1000 integer divisions takes on the order of 10 microseconds IIRC. If the loop was the only limiting factor, you'd be emitting signals at a peak rate of about 100,000 per second. This is not the case because the performance is limited by other factors, which we shall discuss below.
Let's understand what happens when you emit signals in a different thread from where the receiver QObject lives. The signals are packaged in a QMetaCallEvent and posted to the event queue of the receiving thread. An event loop running in the receiving thread -- here, the GUI thread -- acts on those events using an instance of QAbstractEventDispatcher. Each QMetaCallEvent results in a call to the connected slot.
The access to the event queue of the receiving GUI thread is serialized by a QMutex. On Qt 4.8 and newer, the QMutex implementation got a nice speedup, so the fact that each signal emission results in locking of the queue mutex is not likely to be a problem. Alas, the events need to be allocated on the heap in the worker thread, and then deallocated in the GUI thread. Many heap allocators perform quite poorly when this happens in quick succession if the threads happen to execute on different cores.
The biggest problem comes in the GUI thread. There seems to be a bunch of hidden O(n^2) complexity algorithms! The event loop has to process 10,000 events. Those events will be most likely delivered very quickly and end up in a contiguous block in the event queue. The event loop will have to deal with all of them before it can process further events. A lot of expensive operations happen when you invoke your slot. Not only is the QMetaCallEvent deallocated from the heap, but the label schedules an update() (repaint), and this internally posts a compressible event to the event queue. Compressible event posting has to, in worst case, iterate over entire event queue. That's one potential O(n^2) complexity action. Another such action, probably more important in practice, is the progressbar's setValue internally calling QApplication::processEvents(). This can, recursively call your slot to deliver the subsequent signal from the event queue. You're doing way more work than you think you are, and this locks up the GUI thread.
Instrument your slot and see if it's called recursively. A quick-and-dirty way of doing it is
void Widget::setNum(int n)
{
static int level = 0, maxLevel = 0;
level ++;
maxLevel = qMax(level, maxLevel);
ui->label->setNum( n);
ui->progressBar->setValue(n%101);
if (level > 1 && level == maxLevel-1) {
qDebug("setNum recursed up to level %d", maxLevel);
}
level --;
}
What is freezing your GUI thread is not QThread's execution, but the huge amount of work you make the GUI thread do. Even if your code looks innocuous.
Side Note on processEvents and Run-to-Completion Code
I think it was a very bad idea to have QProgressBar::setValue invoke processEvents(). It only encourages the broken way people code things (continuously running code instead of short run-to-completion code). Since the processEvents() call can recurse into the caller, setValue becomes a persona-non-grata, and possibly quite dangerous.
If one wants to code in continuous style yet keep the run-to-completion semantics, there are ways of dealing with that in C++. One is just by leveraging the preprocessor, for example code see my other answer.
Another way is to use expression templates to get the C++ compiler to generate the code you want. You may want to leverage a template library here -- Boost spirit has a decent starting point of an implementation that can be reused even though you're not writing a parser.
The Windows Workflow Foundation also tackles the problem of how to write sequential style code yet have it run as short run-to-completion fragments. They resort to specifying the flow of control in XML. There's apparently no direct way of reusing standard C# syntax. They only provide it as a data structure, a-la JSON. It'd be simple enough to implement both XML and code-based WF in Qt, if one wanted to. All that in spite of .NET and C# providing ample support for programmatic generation of code...
The way you implemented your thread, it does not have its own event loop (because it does not call exec()). I'm not sure if your code within run() is actually executed within your thread or within the GUI thread.
Usually you should not subclass QThread. You probably did so because you read the Qt Documentation which unfortunately still recommends subclassing QThread - even though the developers long ago wrote a blog entry stating that you should not subclass QThread. Unfortunately, they still haven't updated the documentation appropriately.
I recommend reading "You're doing it wrong" on Qt Blog and then use the answer by "Kari" as an example of how to set up a basic multi-threaded system.
But when I run this program it freezes my GUI and when I click inside my window,
it responds that your program is not responding.
Yes because IMO you're doing too much work in thread that it exhausts CPU. Generally program is not responding message pops up when process show no progress in handling application event queue requests. In your case this happens.
So in this case you should find a way to divide the work. Just for the sake of example say, thread runs in chunks of 100 and repeat the thread till it completes 10000000.
Also you should have look at QCoreApplication::processEvents() when you're performing a lengthy operation.
I have a single-threaded linux app which I would like to make parallel. It reads a data file, creates objects, and places them in a vector. Then it calls a compute-intensive method (.5 second+) on each object. I want to call the method in parallel with object creation. While I've looked at qt and tbb, I am open to other options.
I planned to start the thread(s) while the vector was empty. Each one would call makeSolids (below), which has a while loop that would run until interpDone==true and all objects in the vector have been processed. However, I'm a n00b when it comes to threading, and I've been looking for a ready-made solution.
QtConcurrent::map(Iter begin,Iter end,function()) looks very easy, but I can't use it on a vector that's changing in size, can I? And how would I tell it to wait for more data?
I also looked at intel's tbb, but it looked like my main thread would halt if I used parallel_for or parallel_while. That stinks, since their memory manager was recommended (open cascade's mmgt has poor performance when multithreaded).
/**intended to be called by a thread
\param start the first item to get from the vector
\param skip how many to skip over (4 for 4 threads)
*/
void g2m::makeSolids(uint start, uint incr) {
uint curr = start;
while ((!interpDone) || (lineVector.size() > curr)) {
if (lineVector.size() > curr) {
if (lineVector[curr]->isMotion()) {
((canonMotion*)lineVector[curr])->setSolidMode(SWEPT);
((canonMotion*)lineVector[curr])->computeSolid();
}
lineVector[curr]->setDispMode(BEST);
lineVector[curr]->display();
curr += incr;
} else {
uio::sleep(); //wait a little bit for interp
}
}
}
EDIT: To summarize, what's the simplest way to process a vector at the same time that the main thread is populating the vector?
Firstly, to benefit from threading you need to find similarly slow tasks for each thread to do. You said your per-object processing takes .5s+, how long does your file reading / object creation take? It could easily be a tenth or a thousandth of that time, in which case your multithreading approach is going to produce neglegible benefit. If that's the case, (yes, I'll answer your original question soon incase it's not) then think about simultaneously processing multiple objects. Given your processing takes quite a while, the thread creation overhead isn't terribly significant, so you could simply have your main file reading/object creation thread spawn a new thread and direct it at the newly created object. The main thread then continues reading/creating subsequent objects. Once all objects are read/created, and all the processing threads launched, the main thread "joins" (waits for) the worker threads. If this will create too many threads (thousands), then put a limit on how far ahead the main thread is allowed to get: it might read/create 10 objects then join 5, then read/create 10, join 10, read/create 10, join 10 etc. until finished.
Now, if you really want the read/create to be in parallel with the processing, but the processing to be serialised, then you can still use the above approach but join after each object. That's kind of weird if you're designing this with only this approach in mind, but good because you can easily experiment with the object processing parallelism above as well.
Alternatively, you can use a more complex approach that just involves the main thread (that the OS creates when your program starts), and a single worker thread that the main thread must start. They should be coordinated using a mutex (a variable ensuring mutually-exclusive, which means not-concurrent, access to data), and a condition variable which allows the worker thread to efficiently block until the main thread has provided more work. The terms - mutex and condition variable - are the standard terms in the POSIX threading that Linux uses, so should be used in the explanation of the particular libraries you're interested in. Summarily, the worker thread waits until the main read/create thread broadcasts it a wake-up signal indicating another object is ready for processing. You may want to have a counter with index of the last fully created, ready-for-processing object, so the worker thread can maintain it's count of processed objects and move along the ready ones before once again checking the condition variable.
It's hard to tell if you have been thinking about this problem deeply and there is more than you are letting on, or if you are just over thinking it, or if you are just wary of threading.
Reading the file and creating the objects is fast; the one method is slow. The dependency is each consecutive ctor depends on the outcome of the previous ctor - a little odd - but otherwise there are no data integrity issues so there doesn't seem to be anything that needs to be protected by mutexes and such.
Why is this more complicated than something like this (in crude pseudo-code):
while (! eof)
{
readfile;
object O(data);
push_back(O);
pthread_create(...., O, makeSolid);
}
while(x < vector.size())
{
pthread_join();
x++;
}
If you don't want to loop on the joins in your main then spawn off a thread to wait on them by passing a vector of TIDs.
If the number of created objects/threads is insane, use a thread pool. Or put a counter is the creation loop to limit the number of threads that can be created before running ones are joined.
#Caleb: quite -- perhaps I should have emphasized active threads. The GUI thread should always be considered one.