Modify linux protocol table - linux

For some reason I need to change linux protocol table. For example I want to linux recognize protocol 1 as ipv4 (protocol 4) or protocol 47 to l2tp .
Does anyone know how to change this inside linux kernel or preferably in /sys folder, So my client send protocol tcp as an icmp protocol and in other side it receive icmp and recognize it as tcp.
thanks,

Protocol numbers are defined in include/uapi/linux/in.h. Exercise great caution when changing stuff there, you will make your OS incompatible with practically everything else there is out there.
edit: Watch out for drivers that blatantly ignore the value of IPPROTO_TCP in favor of hardcoded values... I just found this 'gem' in drivers/infiniband/hw/nes/nes_cm.c:
451 iph->protocol = 0x06; /* IPPROTO_TCP */

Related

Where did Wireshark/tcpdump/libpcap intercept packet inside Linux kernel?

According to this, wireshark is able to get the packet before it is dropped (therefore I cannot get such packets by myself). And I'm still wondering the exact location in linux kernel for wireshark to fetch the packets.
The answer goes as "On UN*Xes, it uses libpcap, which, on Linux, uses AF_PACKET sockets." Does anyone have more concrete example to use "AF_PACKET sockets"? If I understand wireshark correctly, the network interface card (NIC) will make a copy of all incoming packets and send it to a filter (berkeley packet filter) defined by the user. But where does this happen? Or am I wrong with that understanding and do I miss anything here?
Thanks in advance!
But where does this happen?
If I understood you correctly - you want to know, where is initialized such socket.
There is pcap_create function, that tries to determine type of source interface, creates duplicate of it and activates it.
For network see pcap_create_interface function => pcap_create_common function => pcap_activate_linux function.
All initialization happens in pcap_activate_linux => activate_new function => iface_bind function
( copy descriptor of device with handlep->device = strdup(device);,
create socket with socket(PF_PACKET, SOCK_DGRAM, htons(ETH_P_ALL)),
bind socket to device with bind(fd, (struct sockaddr *) &sll, sizeof(sll)) ).
For more detailed information read comments in source files of mentioned functions - they are very detailed.
After initialization all work happens in a group of functions such as pcap_read_linux, etc.
On Linux, you should be able to simply use tcpdump (which leverages the libpcap library) to do this. This can be done with a file or to STDOUT and you specify the filter at the end of the tcpdump command..

Is ethernet checksum exposed via AF_PACKET?

As it is implied by this question, it seems that checksum is calculated and verified by ethernet hardware, so it seems highly unlikely that it must be generated by software when sending frames using an AF_PACKET socket, as seem here and here. Also, I don't think it can be received from the socket nor by any simple mean, since even Wireshark doesn't display it.
So, can anyone confirm this? Do I really need to send the checksum myself as shown in the last two links? Will checksum be created and checked automatically by the ethernet adaptor?
No, you do not need to include the CRC.
When using a packet socket in Linux using socket(AF_PACKET, SOCK_RAW, htons(ETH_P_ALL) ), you must provide the layer 2 header when sending. This is defined by struct ether_header in netinet/if_ether.h and includes the destination host, source host, and type. The frame check sequence is not included, nor is the preamble, start of frame delimiter, or trailer. These are added by the hardware.
On Linux, if you mention socket(AF_PACKET, SOCK_RAW, htobe16(ETH_P_ALL)) similar case, you don't need to calculate ethernet checksum, NIC hardware/driver will do it for you. That means you need to offer whole data link layer frame except checksum before send it to raw socket.

Linux: How to send a whole packet to a specific port on another host?

I have captured a TCP packet using libpcap, and I want to send this whole packet(without modifying it) to a specific port on another host(which has another sniffer listening to that port).
Is there any way I can do this?
Thanks a lot!
You didn't specify which programming language you're using and what you've tried so far.
Change the IP address field to the target IP and the TCP port field to the port you want. Don't forget to update both checksums.
If what you want is TCP forwarding, the Linux kernel already does this for you.
netcat may work in this case although I think you may have to reconstruct the header, have not tried.
How to escape hex values in netcat
The other option is to use iptables to tee the packet to the other sniffer while still catching it in you package analyzer
http://www.bjou.de/blog/2008/05/howto-copyteeclone-network-traffic-using-iptables/
Another option is using a port mirror, this goes by a few differnt names depending on the switch being used but it allows you to set a port on a a switch to be essentially a hub.
I think your best bet if you can't get netcat to work is to use iptables and you can add filters to that even.
I don't know whether you HAVE to use C or not, but even if you do, I would recommend building a prototype with Python/Scapy to begin with.
Using scapy, here are the steps:
Read the pcap file using rdpcap().
Grab the destination IP address and TCP destination port number (pkt.getlayer(IP).dst, pkt.getlayer(TCP).dport) and save it as a string in a format that you want (e.g. payload = "192.168.1.1:80").
Change the packet's destination IP address and the destination port number so that it can be received by the other host that is listening on the particular port.
Add the payload on top of the packet (pkt = pkt / payload)
Send the packet (sendp(pkt, iface='eth0'))
You will have to dissect the packet on the other host to grab the payload. Without knowing exactly what is on top of the TCP layer in the original packet, I can't give you an accurate code for this, but should be relatively straight forward.
This is all quite easy with Python/Scapy but I expect it to be much harder with C, having to manually calculate the correct offsets and checksums and things. Good luck, and I hope this helps.

Sniffing 802.3 eth packets with socket raw

I'd need to sniff on an interface BPDU (bridge protocol data unit) packets which are encapsulated in eth frames of type 802.3 with LLC header. I tried to open a socket raw:
skd = socket(AF_PACKET, SOCK_RAW, htons(ETH_P_802_3))
but trying to sniff packets i can't catch them. Looking at include/linux/if_ether.h seems that ETH_P_802_3 was a dummy type...is there a solution or i should use ETH_P_ALL and analize the EtherType field of the ethernet header?
Thank you all!
Sorry, I'm not sure if your question is regarding the ETH_P_ALL flag or if your sniffer simply doesn't work.
I would recommend using ETH_P_ALL and decoding the headers yourself.
If your sniffers not working, make sure that you have promiscuous mode on? From the command line, you can use ifconfig eth0 promisc, assuming your ethernet device is eth0. Or you can set the IFF_PROMISC flag on your device using ioctl.
All that said, unless you have a good reason not to, it's probably strongly worth your while to not reinvent the wheel and simply use libpcap.

TCP handshake with SOCK_RAW socket

Ok, I realize this situation is somewhat unusual, but I need to establish a TCP connection (the 3-way handshake) using only raw sockets (in C, in linux) -- i.e. I need to construct the IP headers and TCP headers myself. I'm writing a server (so I have to first respond to the incoming SYN packet), and for whatever reason I can't seem to get it right. Yes, I realize that a SOCK_STREAM will handle this for me, but for reasons I don't want to go into that isn't an option.
The tutorials I've found online on using raw sockets all describe how to build a SYN flooder, but this is somewhat easier than actually establishing a TCP connection, since you don't have to construct a response based on the original packet. I've gotten the SYN flooder examples working, and I can read the incoming SYN packet just fine from the raw socket, but I'm still having trouble creating a valid SYN/ACK response to an incoming SYN from the client.
So, does anyone know a good tutorial on using raw sockets that goes beyond creating a SYN flooder, or does anyone have some code that could do this (using SOCK_RAW, and not SOCK_STREAM)? I would be very grateful.
MarkR is absolutely right -- the problem is that the kernel is sending reset packets in response to the initial packet because it thinks the port is closed. The kernel is beating me to the response and the connection dies. I was using tcpdump to monitor the connection already -- I should have been more observant and noticed that there were TWO replies one of which was a reset that was screwing things up, as well as the response my program created. D'OH!
The solution that seems to work best is to use an iptables rule, as suggested by MarkR, to block the outbound packets. However, there's an easier way to do it than using the mark option, as suggested. I just match whether the reset TCP flag is set. During the course of a normal connection this is unlikely to be needed, and it doesn't really matter to my application if I block all outbound reset packets from the port being used. This effectively blocks the kernel's unwanted response, but not my own packets. If the port my program is listening on is 9999 then the iptables rule looks like this:
iptables -t filter -I OUTPUT -p tcp --sport 9999 --tcp-flags RST RST -j DROP
You want to implement part of a TCP stack in userspace... this is ok, some other apps do this.
One problem you will come across is that the kernel will be sending out (generally negative, unhelpful) replies to incoming packets. This is going to screw up any communication you attempt to initiate.
One way to avoid this is to use an IP address and interface that the kernel does not have its own IP stack using- which is fine but you will need to deal with link-layer stuff (specifically, arp) yourself. That would require a socket lower than IPPROTO_IP, SOCK_RAW - you need a packet socket (I think).
It may also be possible to block the kernel's responses using an iptables rule- but I rather suspect that the rules will apply to your own packets as well somehow, unless you can manage to get them treated differently (perhaps applying a netfilter "mark" to your own packets?)
Read the man pages
socket(7)
ip(7)
packet(7)
Which explain about various options and ioctls which apply to types of sockets.
Of course you'll need a tool like Wireshark to inspect what's going on. You will need several machines to test this, I recommend using vmware (or similar) to reduce the amount of hardware required.
Sorry I can't recommend a specific tutorial.
Good luck.
I realise that this is an old thread, but here's a tutorial that goes beyond the normal SYN flooders: http://www.enderunix.org/docs/en/rawipspoof/
Hope it might be of help to someone.
I can't help you out on any tutorials.
But I can give you some advice on the tools that you could use to assist in debugging.
First off, as bmdhacks has suggested, get yourself a copy of wireshark (or tcpdump - but wireshark is easier to use). Capture a good handshake. Make sure that you save this.
Capture one of your handshakes that fails. Wireshark has quite good packet parsing and error checking, so if there's a straightforward error it will probably tell you.
Next, get yourself a copy of tcpreplay. This should also include a tool called "tcprewrite".
tcprewrite will allow you to split your previously saved capture files into two - one for each side of the handshake.
You can then use tcpreplay to play back one side of the handshake so you have a consistent set of packets to play with.
Then you use wireshark (again) to check your responses.
I don't have a tutorial, but I recently used Wireshark to good effect to debug some raw sockets programming I was doing. If you capture the packets you're sending, wireshark will do a good job of showing you if they're malformed or not. It's useful for comparing to a normal connection too.
There are structures for IP and TCP headers declared in netinet/ip.h & netinet/tcp.h respectively. You may want to look at the other headers in this directory for extra macros & stuff that may be of use.
You send a packet with the SYN flag set and a random sequence number (x). You should receive a SYN+ACK from the other side. This packet will have an acknowledgement number (y) that indicates the next sequence number the other side is expecting to receive as well as another sequence number (z). You send back an ACK packet that has sequence number x+1 and ack number z+1 to complete the connection.
You also need to make sure you calculate appropriate TCP/IP checksums & fill out the remainder of the header for the packets you send. Also, don't forget about things like host & network byte order.
TCP is defined in RFC 793, available here: http://www.faqs.org/rfcs/rfc793.html
Depending on what you're trying to do it may be easier to get existing software to handle the TCP handshaking for you.
One open source IP stack is lwIP (http://savannah.nongnu.org/projects/lwip/) which provides a full tcp/ip stack. It is very possible to get it running in user mode using either SOCK_RAW or pcap.
if you are using raw sockets, if you send using different source mac address to the actual one, linux will ignore the response packet and not send an rst.

Resources