I have a program written in Verilog and I want to convert it into a FSM automatically. Is this possible (just to visualize it)?
Here is the code :
module pci(reset,clk,frame,irdy,trdy,devsel,idsel,ad,cbe,par,stop,inta,led_out);
input reset;
input clk;
input frame;
input irdy;
output trdy;
output devsel;
input idsel;
inout [31:0] ad;
input [3:0] cbe;
inout par;
output stop;
output inta;
output [3:0] led_out;
parameter DEVICE_ID = 16'h9500;
parameter VENDOR_ID = 16'h106d; // Sequent!
parameter DEVICE_CLASS = 24'hFF0000; // Misc
parameter DEVICE_REV = 8'h01;
parameter SUBSYSTEM_ID = 16'h0001; // Card identifier
parameter SUBSYSTEM_VENDOR_ID = 16'hBEBE; // Card identifier
parameter DEVSEL_TIMING = 2'b00; // Fast!
reg [2:0] state;
reg [31:0] data;
reg [1:0] enable;
parameter EN_NONE = 0;
parameter EN_RD = 1;
parameter EN_WR = 2;
parameter EN_TR = 3;
reg memen; // respond to baseaddr?
reg [7:0] baseaddr;
reg [5:0] address;
parameter ST_IDLE = 3'b000;
parameter ST_BUSY = 3'b010;
parameter ST_MEMREAD = 3'b100;
parameter ST_MEMWRITE = 3'b101;
parameter ST_CFGREAD = 3'b110;
parameter ST_CFGWRITE = 3'b111;
parameter MEMREAD = 4'b0110;
parameter MEMWRITE = 4'b0111;
parameter CFGREAD = 4'b1010;
parameter CFGWRITE = 4'b1011;
`define LED
`ifdef LED
reg [3:0] led;
`endif
`undef STATE_DEBUG_LED
`ifdef STATE_DEBUG_LED
assign led_out = ~state;
`else
`ifdef LED
assign led_out = ~led; // board is wired for active low LEDs
`endif
`endif
assign ad = (enable == EN_RD) ? data : 32'bZ;
assign trdy = (enable == EN_NONE) ? 'bZ : (enable == EN_TR ? 1 : 0);
assign par = (enable == EN_RD) ? 0 : 'bZ;
reg devsel;
assign stop = 1'bZ;
assign inta = 1'bZ;
wire cfg_hit = ((cbe == CFGREAD || cbe == CFGWRITE) && idsel && ad[1:0] == 2'b00);
wire addr_hit = ((cbe == MEMREAD || cbe == MEMWRITE) && memen && ad[31:12] == {12'b0, baseaddr});
wire hit = cfg_hit | addr_hit;
always #(posedge clk)
begin
if (~reset) begin
state <= ST_IDLE;
enable <= EN_NONE;
baseaddr <= 0;
devsel <= 'bZ;
memen <= 0;
`ifdef LED
led <= 0;
`endif
end
else begin
case (state)
ST_IDLE: begin
enable <= EN_NONE;
devsel <= 'bZ;
if (~frame) begin
address <= ad[7:2];
if (hit) begin
state <= {1'b1, cbe[3], cbe[0]};
devsel <= 0;
// pipeline the write enable
if (cbe[0])
enable <= EN_WR;
end
else begin
state <= ST_BUSY;
enable <= EN_NONE;
end
end
end
ST_BUSY: begin
devsel <= 'bZ;
enable <= EN_NONE;
if (frame)
state <= ST_IDLE;
end
ST_CFGREAD: begin
enable <= EN_RD;
if (~irdy || trdy) begin
case (address)
0: data <= { DEVICE_ID, VENDOR_ID };
1: data <= { 5'b0, DEVSEL_TIMING, 9'b0, 14'b0, memen, 1'b0};
2: data <= { DEVICE_CLASS, DEVICE_REV };
4: data <= { 12'b0, baseaddr, 8'b0, 4'b0010 }; // baseaddr + request mem < 1Mbyte
11: data <= {SUBSYSTEM_ID, SUBSYSTEM_VENDOR_ID };
16: data <= { 24'b0, baseaddr };
default: data <= 'h00000000;
endcase
address <= address + 1;
end
if (frame && ~irdy && ~trdy) begin
devsel <= 1;
state <= ST_IDLE;
enable <= EN_TR;
end
end
ST_CFGWRITE: begin
enable <= EN_WR;
if (~irdy) begin
case (address)
4: baseaddr <= ad[19:12]; // XXX examine cbe
1: memen <= ad[1];
default: ;
endcase
address <= address + 1;
if (frame) begin
devsel <= 1;
state <= ST_IDLE;
enable <= EN_TR;
end
end
end
ST_MEMREAD: begin
enable <= EN_RD;
if (~irdy || trdy) begin
case (address)
`ifdef LED
0: data <= { 28'b0, led };
`endif
default: data <= 'h00000000;
endcase
address <= address + 1;
end
if (frame && ~irdy && ~trdy) begin
devsel <= 1;
state <= ST_IDLE;
enable <= EN_TR;
end
end
ST_MEMWRITE: begin
enable <= EN_WR;
if (~irdy) begin
case (address)
`ifdef LED
0: led <= ad[3:0];
`endif
default: ;
endcase
address <= address + 1;
if (frame) begin
devsel <= 1;
state <= ST_IDLE;
enable <= EN_TR;
end
end
end
endcase
end
end
endmodule
If there is no automatic way, could you explain a way of doing this?
Here is an FSM made with hand but can't test so ...
Does it seem ok?
It is sometimes easier to write the code and have the documentation generated from that. Sometimes you inherit legacy code without documentation, in these situations especially if new to a language tools to help visualise what is happening can be quite useful.
With cadence tools you can run your code with 'code coverage' then imc can load the coverage data and run FSM Analysis.
I have included a simple FSM below and show the generated state diagram.
module simple_fsm();
//Inputs to FSM
logic clk;
logic rst_n;
logic [1:0] state ;
logic [1:0] nextstate;
logic turn_on ;
logic turn_off ;
localparam S_OFF = 2'b00;
localparam S_GO_ON = 2'b01;
localparam S_ON = 2'b10;
localparam S_GO_OFF = 2'b11;
// State FlipFlop
always #(posedge clk or negedge rst_n) begin
if (~rst_n) begin
state <= 2'b0;
end
else begin
state <= nextstate;
end
end
//Nextstate Logic
always #* begin
case (state)
2'd0 : if (turn_on) begin
nextstate = S_GO_ON;
end
2'd1 : nextstate = S_ON;
2'd2 : if (turn_off) begin
nextstate = S_GO_OFF ;
end
2'd3 : nextstate = S_OFF;
endcase
end
//TB clk
initial begin
#1ns;
clk = 0;
forever begin
#20ns;
clk = ~clk;
end
end
//The Test
initial begin
rst_n = 1'b0;
turn_on = 1'b0;
turn_off = 1'b0;
#(posedge clk);
#(posedge clk);
rst_n = 1'b1 ;
#(posedge clk);
turn_on = 1'b1;
#(posedge clk);
turn_on = 1'b0;
#(posedge clk);
#(posedge clk);
#100ms;
$finish();
end
endmodule
Execute with :
$ irun simple_fsm.sv -coverage all -covdut simple_fsm
$ imc &
Load cov_work (folder created by above simulation) in imc, select simple_fsm and choose FSM Analysis.
imc also helps to visualise your test coverage as well. Arcs and states that have not been hit are shown in red.
We have seen that there are some tools which can visualise the FSM, another part of the question is; is the syntax of the purposed FSM suitable for these tools.
#vermaete has reported that Modelsim SE can not see the FSM. From imc I get :
Which does not seem to cover the complexity of the code, and is shown as only having 2 reachable states, IDLE and BUSY. I would recommend if OP is going down the route of using tools to visualise, adopt a simpler (syntax) FSM structure so that the tools can parse it better.
The better and expensive simulators can detect FSM's in the code and make a visualization of it. E.g. the Modelsim SE version. These can be nice to understand code and check the coveage.
But making you're own drawing of a 6-state FSM is not that hard.
The way to check if it's OK is to write a simulation and check that the behaviour is what you want. There is no point getting a bubble diagram out and seeing if it matches your hand-drawn one, as you have no way of knowing if your hand-drawn diagram is correct...
case(segmentRead)
//-------------------
SEGMENT0: begin
READ_Ready_EEPROM <= 1'b0;
READ_RDSR_Enable <= 1'b0;
Read_Enable <= 1'b0;
READ_RDSR_DATA_REG <= 8'b0;
// READ_DATA_REG <= 8'b0;
end
//-------------------
SEGMENT2: begin
READ_RDSR_Enable <= 1'b1;
READ_RDSR_DATA_REG <= 8'b0;
end
// //-------------------
SEGMENT3: begin
READ_RDSR_Enable <= 1'b0;
READ_RDSR_DATA_REG <= RDSR_Data;
end
//-------------------
SEGMENT4: begin
Read_Enable <= 1'b1;
end
//-------------------
SEGMENT5: begin
Read_Enable <= 1'b0;
READ_DATA_REG <= Read_Data;
end
//-------------------
SEGMENT6: begin
READ_Ready_EEPROM <= 1'b1;
end
//-------------------
endcase
Related
I have the main module with FIFO stuff.
Here it is:
module syn_fifo #(
parameter DATA_WIDTH = 8, // inpit capacity
parameter DATA_DEPTH = 8 // the depth of the FIFO
)
(
input wire clk,
input wire rst,
// Write_______________________________________________
input wire [DATA_WIDTH-1:0]din, // the input data
input wire wren, // Write anable
output wire full,
// Read________________________________________________
output wire [DATA_WIDTH-1:0]dout, // The output data
input wire rden, // Read enable
output wire empty
);
integer q_size; // The queue size(length)
integer golova; // The queue beginning
integer hvost; // The end of queue
reg [DATA_WIDTH-1:0]fifo[DATA_DEPTH-1:0];
assign full = (q_size == DATA_DEPTH) ? 1'b1: 1'b0; // FIFO is full
/*
True { full = (q_size==DATA_TEPTH) = 1 }, then wire "full" goes to "1" value
False { full = (q_size==DATA_TEPTH) = 0 }, then wire "full" goes to "0" value
*/
assign empty = (golova == hvost); // FIFO is empty
assign dout = fifo[hvost]; // FWFT (other write mode)
integer i;
//___________(The queue fullness)___________________
always #(posedge clk or posedge rst)
begin
if (rst == 1'b1)
begin
for (i = 0; i < DATA_DEPTH; i = i + 1) // incrementing the FIFO
fifo[i] <= 0; // Resetting the FIFO
golova <= 0; // Resetting the queue start variable
end
else
begin //Write_______________________________________
if (wren && ~full)
begin
fifo[golova] <= din; // putting data in to the golova
if (golova == DATA_DEPTH-1) // restrictions for the queue beginning
golova <= 0; // Reset the beginning
else
golova <= golova + 1; // other occurence incrementing
end
end
end
//Reading
always #(posedge clk or posedge rst)
begin
if (rst == 1'b1)
begin
hvost <= 0;
end
else
begin
if (rden && !empty)
/*for staying inside the queue limits - make the check of non equality of the "hvost" & "queue size"*/
begin
if (hvost == DATA_DEPTH-1) // if hvost = DATA_DEPTH-1, then
hvost <= 0; // Reset hvost
else
hvost <= hvost + 1;
end
end
end
always # (posedge clk)
begin
if (rst == 1'b1) begin
q_size <= 0;
end
else
begin
case ({wren && ~full, rden && ~empty} )
2'b01: q_size <= q_size + 1; // RO
2'b10: q_size <= q_size - 1; // WO
default: q_size <= q_size; // read and write at the same time
endcase
end
end
endmodule
Also i've got the testbench module down delow:
`timescale 1ns / 1ps
module fifo_tb();
localparam CLK_PERIOD = 10;
reg clk;
reg rst;
always begin
clk <= 1'b0;
#(CLK_PERIOD / 2);
clk <= 1'b1;
#(CLK_PERIOD / 2);
end
localparam DATA_WIDTH = 8;
localparam DATA_DEPTH = 4;
reg [DATA_WIDTH-1:0]din;
reg wren;
reg rden;
wire [DATA_WIDTH-1:0]dout;
wire empty;
wire full;
wire wr_valid;
wire rd_valid;
task write;
input integer length;
begin
if (length) begin
#(posedge clk);
wren <= 1'b1;
while (length) begin
#(posedge clk);
if (wr_valid) begin
length <= length - 1;
if (length == 1) begin
wren <= 1'b0;
end
end
end
end
end
endtask
task read;
input integer length;
begin
if (length) begin
#(posedge clk);
rden <= 1'b1;
while (length) begin
#(posedge clk);
if (rd_valid) begin
length <= length - 1;
if (length == 1) begin
rden <= 1'b0;
end
end
end
end
end
endtask
initial begin
rst <= 1'b0;
wren <= 1'b0;
rden <= 1'b0;
#50;
rst <= 1'b1;
#50;
rst <= 1'b0;
#200;
/* Test Start */
//write(4);
//read(4);
/* Test Stop */
#1000;
$finish;
end
assign wr_valid = wren & ~full;
assign rd_valid = rden & ~empty;
always #(posedge clk) begin
if (rst == 1'b1) begin
din <= 0;
end else begin
if (wr_valid == 1'b1) begin
din <= din + 1;
end
end
end
// write?
always begin
#400;
write(5);
#15;
write(7);
#25;
write(3);
#15;
write(9);
#15;
write(1);
#10000;
end
// read?
always begin
#420;
read(3);
#37;
read(13);
#21;
read(7);
#15;
read(9);
#15;
read(4);
#20;
read(7);
#10000;
end
initial begin
$dumpfile("test.vcd");
$dumpvars(0,fifo_tb);
end
syn_fifo #(.DATA_WIDTH(DATA_WIDTH),
.DATA_DEPTH(DATA_DEPTH)) dut ( .clk(clk),
.rst(rst),
.din(din),
.wren(wren),
.full(full),
.dout(dout),
.rden(rden),
.empty(empty));
endmodule
Trying to compile all of it with iVerilog + GTKwave + Win10 by next command:
C:\Program Files\iverilog\bin>iverilog -o fifo.v fifo_tb.v
The compiler gives me the next message:
fifo_tb.v:138:error: Unknown module type:syn_fifo
2 error(s) during elaboration.
These modules were missing:syn_fifo referenced 1 times
At the necessary line "138" maybe the main mistake is covered by the "Number sign" in module instantiation?
/*132|*/ initial begin
/*133|*/ $dumpfile("test.vcd");
/*134|*/ $dumpvars(0,fifo_tb);
/*135|*/ end
/*136|*/
/*137|*/ syn_fifo #(.DATA_WIDTH(DATA_WIDTH),
/*138|*/ .DATA_DEPTH(DATA_DEPTH)) dut ( .clk(clk),
/*139|*/ .rst(rst),
/*140|*/ .din(din),
/*141|*/ .wren(wren),
/*142|*/ .full(full),
/*143|*/ .dout(dout),
/*144|*/ .rden(rden),
/*145|*/ .empty(empty));
/*146|*/
/*147|*/ endmodule
I'm not shure of that.
Seems like you are indicating fifo.v to be your output file, try:
iverilog -o syn_fifo.tb -s fifo_tb fifo_tb.v fifo.v
-o -> output file
-s -> top module (in this case, the test one)
(after everything, include all the files)
Then, to run it:
vvp syn_fifo.tb
Thank you, dear #m4j0rt0m
I just forgot to type in the output file name at the CMD window. Was very exhausted so haven't noticed such a detail)))
Usually it looks like:
iverilog -o OUTPUT_FILE_NAME fifo_tb.v fifo.v
And also I tried your advice, and it's finally done!
Good day guys, I'm created a Shift - And - Add multiplier. I'm confused on why my output is wrong and always at 85. Is it something with the Test bench ? It's working by the way.
new1.v
`define M ACC[0]
module mult4X4 (Clk, St, Mplier, Mcand, Done, Result);
input Clk,St;
input [3:0] Mplier, Mcand;
output Done;
output [7:0] Result;
reg [3:0] State;
reg [8:0] ACC;
initial
begin
State = 0;
ACC = 0;
end
always #(posedge Clk)
begin
case (State)
0:
begin
if(St == 1'b1)
begin
ACC[8:4] <= 5'b00000 ;
ACC[3:0] <= Mplier ;
State <= 1;
end
end
1,3,5,7 :
begin
if(`M==1'b1)
begin
ACC[8:4] <= {1'b0, ACC[7:4]} + Mcand ;
State <= State +1;
end
else
begin
ACC <= {1'b0, ACC[8:1]};
State <= State + 2;
end
end
2,4,6,8 :
begin
ACC <= {1'b0, ACC[8:1]};
State <= State +1;
end
9:
begin
State <= 0;
end
endcase
end
assign Done = (State == 9) ? 1'b1 : 1'b0 ;
assign Result = (State == 9) ? ACC[7:0] : 8'b01010101;
endmodule
tb_new1.v
module tb_mult4X4;
reg Clk,St,nReset;
reg [3:0] Mplier;
reg [3:0] Mcand;
wire Done;
wire [7:0] Result;
mult4X4 UUT (Clk,St,Mplier,Mcand,Done,Result);
initial begin
$dumpfile ("mult4X4.vpd");
$dumpvars;
end
initial
Clk = 0;
always
#5 Clk =~Clk;
initial begin
nReset = 0;
St = 0;
Mcand = 4'b1101;
Mplier = 4'b1011;
#10
nReset = 1;
St = 1;
Mcand = 4'b1111;
Mplier = 4'b1001;
#10
Mcand = 4'b0101;
Mplier = 4'b1010;
#10
Mcand = 4'b1111;
Mplier = 4'b1111;
#10
Mcand = 4'b1101;
Mplier = 4'b1010;
$finish;
end
endmodule
I ran though the code so many times and everything seems to be following my FSM. Can anyone please point out where went wrong. Really confused on this one
#10 is way to short. Your RTL requires 10 clocks to complete but you change the input every clock (half clk is #5).
Use #100 or better yet #(posedge Done); (which makes the test-bench to wait for done regardless the number of clocks that is required).
I'm creating the I2C protocol in verilog to read data from a sensor (BMP180), AS you know, the sensor sends me a bit of ack recognition. How do I use the inout i2c_sda port to send and how do I receive.
As delivery and receipt i2c_sda the same line, if my variable is declared of type inout.
module stepPrueba(
input wire clk1,
input wire reset,
input wire start,
inout i2c_sda,
inout i2c_scl,
output wire ready,
output reg led1,
output reg led2
);
reg i2c_scl_out;
assign i2c_scl1= (i2c_scl_out == 1'b0) ? 1'b0 : 1'bz;
wire i2c_scl_in = i2c_scl;
assign i2c_scl = (i2c_scl_enable == 0) ? i2c_scl1 : clk1;
reg clk;
assign clk1 = (clk == 1)? 1'bz:1'b0;
reg i2c_sda_out;
assign i2c_sda = (i2c_sda_out == 1'b0) ? 1'b0 : 1'bz;
wire i2c_sda_in = i2c_sda ;
reg [6:0] addr;
reg [7:0] data;
reg enable; //(read=1, write=0)
reg datas;
reg enable2; //(read=1, write = 0)
reg [7:0] state;
reg [7:0] count;
reg i2c_scl_enable = 0;
reg [6:0] saved_addr;
reg [7:0] saved_data;
//goal es escribir al dispositivo direccion 0X55, 0Xaa
localparam STATE_IDLE = 0;
localparam STATE_START = 1;
localparam STATE_ADDR =2;
localparam STATE_RW = 3;
localparam STATE_WACK = 4;
localparam STATE_DATA = 5;
localparam STATE_WACK2 = 6;
localparam STATE_STOP = 7;
always#(posedge clk)
begin
//enable2 <= 0; //i2c_scl==zetas & c_lectura=z;
if(reset == 1)
begin
i2c_scl_out<=1;
i2c_scl_enable <= 0;
end
else
begin
if((state == STATE_IDLE) || (state == STATE_START) )
begin
//i2c_scl_enable <= 0; //dats == 1 --> ztas == z
i2c_scl_out<=1;
i2c_scl_enable <= 0;
end
else
begin
i2c_scl_enable <= 1; // dats==clk;
clk<=clk1;
end
end
end
always#(posedge clk)
begin
if(reset == 1)
begin
led1 <=0;
led2 <=0;
state <=0;
i2c_sda_out <= 1;// i2c_sda ==z;
addr <= 7'b1110111; // direccion del sensor
count <= 8'd0;
data <= 8'b11110100; //direccion interna PRESION
end
else //reset ==0
begin
case (state)
STATE_IDLE:
begin //idle
//datas <= 1; //zetas==z
i2c_scl_out<=1;
i2c_scl_enable <= 0;
i2c_sda_out <= 1;
if(start)
begin
state <= STATE_START;
saved_addr <= addr;
saved_data <= data;
// reg i2c_scl_out;
// assign i2c_scl1= (i2c_scl_out == 1'b0) ? 1'b0 : 1'bz;
// wire i2c_scl_in = i2c_scl;
// assign i2c_scl = (i2c_scl_enable == 0) ? i2c_scl1 : ~clk;
end
else
begin
state <= STATE_IDLE;
end
end
STATE_START:
begin // start
//enable <= 0; // lectura==z; --> i2c_sda==zetas
i2c_sda_out <= 0;
//datas <= 0; // zetas==0
state<= STATE_ADDR;
count <= 6;
end
STATE_ADDR:
begin //msb addres bit
//enable <= 0; // lectura==z; --> i2c_sda==zetas
i2c_sda_out <= saved_addr[count]; // datas ==0 --> zetas==0 || datas==1 --> zetas==z
if (count == 0)
begin
state <= STATE_RW;
end
else
begin
count <= count - 1;
end
end
STATE_RW:
begin
//enable <= 0; //enable==0 --> i2c_sda==zetas
i2c_sda_out <= 0;//datas <= 0;
state <= STATE_WACK;
end
STATE_WACK:
begin
//enable <= 1; //enable==1 lee i2c_sda==z & lectura==i2c_sda
//enable <= 0;
//if(APA)
if(i2c_sda_in==1)
begin
state <= STATE_IDLE;
end
else
begin
state <= STATE_DATA;
led1 <= 1;
end
count <= 7;
end
STATE_DATA:
begin
//enable <= 0;
i2c_sda_out <= saved_data[count];
if(count ==0)
begin
state <= STATE_WACK2;
end
else
begin
count <= count - 1;
end
end
STATE_WACK2:
begin
//enable <= 1;
if(i2c_sda_in ==1)
begin
state <= STATE_IDLE;
end
else
begin
state <= STATE_STOP;
led2 <= 1;
end
end
STATE_STOP:
begin
//enable <= 0;
i2c_sda_out <= 0;
state <= STATE_IDLE;
end
endcase
end
end
endmodule
If you have a module pin defined as
inout wire pin
then you can access it like so
wire pin_input = pin;
assign pin = pin_oe ? pin_output : 1'bz;
this should infer a tristate buffer.
However, I would be careful when doing this, as if you infer a tristate buffer too early, it can limit what you can do with the module. For example, it would be possible to connect multiple internal I2C components together, such as allowing multiple masters inside the FPGA access to the same pins. However, tristate signals cannot be routed inside the FPGA, so if you implement the tristate inside the I2C master module, this becomes impossible. Instead, what you might consider is implementing each pin as three module pins: input, output, and output enable/tristate. This allows multiple modules to be connected with an emulated tristate bus, and allows them to share one set of tristate buffers to the actual I/O pin on the chip.
For a good example of how this works, see the comments in https://github.com/alexforencich/verilog-i2c/blob/master/rtl/i2c_master.v .
I have written following code which produces pulse of different width.I want the code to produce a single pulse according to select line.
If select line is
00 pulse width = 1 us ,
01 pulse width = 10 us
. .
11 pulse width = 1000 us
The input clock is of 10 Mhz.
But according to code I am getting continuous pulse if I don't provide any other value of selection line.How can I achieve only one pulse?
module pulse(input wire [1:0] sel , //selection lines s1 s0
input clk,
input rst_n,
output reg flag, //for checking conditions
output reg [13:0] Q, // output of 14 bit counter
output reg pulse, //output pulse
output reg count); //also for checking conditions
wire flag_d , count_d;
assign flag_d = ( (sel == 2'b00 | sel == 2'b01 | sel == 2'b10 | sel == 2'b11) && count == 1'b0)? 1'b1 : flag;
assign count_d = ( (sel == 2'b00 | sel == 2'b01 | sel == 2'b10 | sel == 2'b11) && count == 1'b0)? 1'b1 : count;
always #(posedge clk , negedge rst_n)
begin
if(!rst_n)
begin
Q <= 14'h0;
count <= 1'b0;
pulse <= 1'b0;
flag <= 1'b0;
end
else
begin
flag <= flag_d;
count <= count_d;
if(flag)
begin
case(sel)
2'b00: Q <= 14'd11;//count from 11 to 1
2'b01: Q <= 14'd101;//count from 101 to 1
2'b10: Q <= 14'd1001;//count from 1001 to 1
2'b11: Q <= 14'd10001;//count from 10001 to 1
default: Q <= 14'd0;
endcase
flag <= 1'b0;
end
else
begin
if(Q != 14'h1 && Q != 14'h0)
begin
Q <= Q - 14'h1;
pulse <= 1'b1;
end
else
begin
pulse <= 1'b0;
count <= 1'b0;
end
end
end
end
endmodule
Is this code in a good coding style considering the synthesis and hardware of the circuit? if not than what changes I should apply?..
I couldn't figure out the point of flag_d and count_d. Also ( (sel == 2'b00 | sel == 2'b01 | sel == 2'b10 | sel == 2'b11) && count == 1'b0) simplifies to (count == 1'b0). sel should not be Xs or Zs.
I think you want something more like the following:
reg [13:0] next_Q;
always #* begin
if (Q==0) begin
case(sel)
2'b00 : next_Q = 14'd10;
2'b01 : next_Q = 14'd100;
2'b10 : next_Q = 14'd1000;
2'b11 : next_Q = 14'd10000;
endcase
end
else begin
next_Q = Q - 1;
end
end
always #(posedge clk, negedge rst_n) begin
if (!rst_n) begin
pulse <= 1'b0;
Q <= 14'd0;
end
else begin
// if (Q==0) pulse <= !pulse; // high and low pulse will have equal if sel is constant
pulse <= (Q!=0); // or high pulse based on sel, low is one clk
Q <= next_Q;
end
end
working example: http://www.edaplayground.com/x/GRv
module pulse(input wire [1:0] sel, // No need for the sel to be wire
input clk,
input rst_n,
output reg [13:0] Q,
output reg pulse,
input input_stb, // Input is valid
input output_ack,
output output_stb,
output input_ack); // 2 Flag model
reg s_input_ack ;
reg s_output_stb;
parameter get_inputs = 4'd0,
counter = 4'd1;
always #(posedge clk , negedge rst_n)
begin
case (state)
get_inputs:
s_input_ack <= 1;
if (s_input_ack && input_a_stb)
begin
s_input_ack <= 0;
case(sel)
00: Q <= 14'd11;//00000000001010;
01: Q <= 14'd101;//00000001100100;
10: Q <= 14'd1001;//00001111101000;
11: Q <= 14'd10001;//10011100010000;
default: Q <= 14'd0;
endcase
state <= counter;
end
counter:
begin
s_output_stb <= 1;
if (s_output_stb && output_z_ack)
begin
s_output_stb <= 0;
if(Q != 14'h1 && Q != 14'h0)
begin
Q <= Q - 1'b1;
pulse <= 1'b1;
end
else
begin
pulse <= 1'b0;
end
end
state <= get_inputs;
end
endcase
if(!rst_n)
begin
Q <= 14'h0;
pulse <= 1'b0;
s_input_ack <= 0;
s_output_stb <= 0;
end
assign input_ack = s_input_ack;
assign output_stb = s_output_stb;
end
endmodule
*Still needs work , add registers and necessary signals accordingly. Will edit at a later point in time
i'm making 8x32b register file below is my verilog code
module register_file(clk, reset, dstW, valW, write, srcA, srcB, valA, valB );
input clk;
input reset;
input[2:0] dstW;
input[31:0] valW;
input write;
input[2:0] srcA;
input[2:0] srcB;
output[31:0] valA;
output[31:0] valB;
reg[31:0] r0eax, r1ecx, r2edx, r3ebx, r4esi, r5edi, r6esp, r7edi;
wire[31:0] reg_input_0, reg_input_1, reg_input_2, reg_input3, reg_input4,
reg_input5, reg_input6, reg_input7;
wire[7:0] decoder_out, select;
assign valA =
(srcA == 3'b000) ? r0eax:
(srcA == 3'b001) ? r1ecx:
(srcA == 3'b010) ? r2edx:
(srcA == 3'b011) ? r3ebx:
(srcA == 3'b100) ? r4esi:
(srcA == 3'b101) ? r5edi:
(srcA == 3'b110) ? r6esp:
(srcA == 3'b111) ? r7edi: 32'bx;
assign valB =
(srcB == 3'b000) ? r0eax:
(srcB == 3'b001) ? r1ecx:
(srcB == 3'b010) ? r2edx:
(srcB == 3'b011) ? r3ebx:
(srcB == 3'b100) ? r4esi:
(srcB == 3'b101) ? r5edi:
(srcB == 3'b110) ? r6esp:
(srcB == 3'b111) ? r7edi: 32'bx;
assign decoder_out[0] = (dstW == 3'b000)? 1'b1 : 1'b0;
assign decoder_out[1] = (dstW == 3'b001)? 1'b1 : 1'b0;
assign decoder_out[2] = (dstW == 3'b010)? 1'b1 : 1'b0;
assign decoder_out[3] = (dstW == 3'b011)? 1'b1 : 1'b0;
assign decoder_out[4] = (dstW == 3'b100)? 1'b1 : 1'b0;
assign decoder_out[5] = (dstW == 3'b101)? 1'b1 : 1'b0;
assign decoder_out[6] = (dstW == 3'b110)? 1'b1 : 1'b0;
assign decoder_out[7] = (dstW == 3'b111)? 1'b1 : 1'b0;
and(select[0], write, decoder_out[0]);
and(select[1], write, decoder_out[1]);
and(select[2], write, decoder_out[2]);
and(select[3], write, decoder_out[3]);
and(select[4], write, decoder_out[4]);
and(select[5], write, decoder_out[5]);
and(select[6], write, decoder_out[6]);
and(select[7], write, decoder_out[7]);
assign reg_input_0 = select[0] ? valW : r0eax;
assign reg_input_1 = select[1] ? valW : r1ecx;
assign reg_input_2 = select[2] ? valW : r2edx;
assign reg_input_3 = select[3] ? valW : r3ebx;
assign reg_input_4 = select[4] ? valW : r4esi;
assign reg_input_5 = select[5] ? valW : r5edi;
assign reg_input_6 = select[6] ? valW : r6esp;
assign reg_input_7 = select[7] ? valW : r7edi;
always #(posedge clk or negedge reset)
begin
if(!reset) begin
r0eax <= 32'b0;
r1ecx <= 32'b0;
r2edx <= 32'b0;
r3ebx <= 32'b0;
r4esi <= 32'b0;
r5edi <= 32'b0;
r6esp <= 32'b0;
r7edi <= 32'b0;
end
else begin
r0eax <= reg_input_0;
r1ecx <= reg_input_1;
r2edx <= reg_input_2;
r3ebx <= reg_input_3;
r4esi <= reg_input_4;
r5edi <= reg_input_5;
r6esp <= reg_input_6;
r7edi <= reg_input_7;
end
end
endmodule
and testbench is as follows
module tttt;
// Inputs
reg clk;
reg reset;
reg [2:0] dstW;
reg [31:0] valW;
reg write;
reg [2:0] srcA;
reg [2:0] srcB;
// Outputs
wire [31:0] valA;
wire [31:0] valB;
integer i;
// Instantiate the Unit Under Test (UUT)
register_file uut (
.clk(clk),
.reset(reset),
.dstW(dstW),
.valW(valW),
.write(write),
.srcA(srcA),
.srcB(srcB),
.valA(valA),
.valB(valB)
);
initial begin
// Initialize Inputs
clk = 0;
reset = 1;
dstW = 0;
valW = 0;
write = 0;
srcA = 0;
srcB = 0;
i =0;
#10
reset = 0;
#10
reset = 1;
// Wait 100 ns for global reset to finish
#100;
clk=1;
valW = 100;
write = 1;
for(i=0; i<8; i = i+1) begin
clk =0;
#10;
dstW = i;
clk = 1;
#10;
clk =0;
#10;
valW = valW + 10;
clk =1;
#10;
end
#100;
write =0;
for(i=0; i<8; i=i+1 ) begin
clk = 0;
#10;
srcA = i;
srcB = i;
#10;
clk=1;
#10;
end
clk =0;
#10;
clk = 1;
// Add stimulus here
end
endmodule
and result
it just results 0 value after third i value.
i checked using red rectangular. could you give me a advice ? thanks in advance
When you synthetize your design, these warnings show up:
WARNING:Xst:1780 - Signal <reg_input7> is never used or assigned. This unconnected signal will be trimmed during the optimization process.
WARNING:Xst:1780 - Signal <reg_input6> is never used or assigned. This unconnected signal will be trimmed during the optimization process.
WARNING:Xst:1780 - Signal <reg_input5> is never used or assigned. This unconnected signal will be trimmed during the optimization process.
WARNING:Xst:1780 - Signal <reg_input4> is never used or assigned. This unconnected signal will be trimmed during the optimization process.
WARNING:Xst:1780 - Signal <reg_input3> is never used or assigned. This unconnected signal will be trimmed during the optimization process.
If the synthetizer detects that those signals are not being used, it discards them. Note that these signals affect the selection of registers 3 to 7, and because of that, you cannot see the loaded value when you read them.
But... your code assigns and use these signals, doesn't it?
assign reg_input_0 = select[0] ? valW : r0eax;
assign reg_input_1 = select[1] ? valW : r1ecx;
assign reg_input_2 = select[2] ? valW : r2edx;
assign reg_input_3 = select[3] ? valW : r3ebx;
assign reg_input_4 = select[4] ? valW : r4esi;
assign reg_input_5 = select[5] ? valW : r5edi;
assign reg_input_6 = select[6] ? valW : r6esp;
assign reg_input_7 = select[7] ? valW : r7edi;
What makes reg_input_0,1 and 2 different from reg_input_3,4,5,6 and 7 ? This:
wire[31:0] reg_input_0, reg_input_1, reg_input_2, reg_input3, reg_input4,
reg_input5, reg_input6, reg_input7;
Look: reg_input_0, reg_input_1 and reg_input_2. Then, reg_input3 (where's the underscore??)
As reg_input_3 to reg_input_7 are not defined, they default to a 1-bit signal, instead of 32 bits. When you use the multiplexer, at reg_input_3 for instance, to define its value...
assign reg_input_3 = select[3] ? valW : r3ebx;
You are actually synthetizing this:
assign reg_input_3 = select[3] ? valW[0] : r3ebx[0];
And in your clocked always, the actual register assignment is not as this:
r3ebx <= reg_input_3;
But as this:
r3ebx[0] <= reg_input_3;
This description of yours causes feedback from the register output through the input via the mentioned multiplexor. While this is ok when the there's a clock triggered register, if the synthetizer doesn't detect it, you will end up generating a lot of unnecesary multiplexers. Look at this generated schematic from the results of the synthesis process (synthetizer is XST)
The eight squares at the right are your eight registers. At the left, there are a massive amount of multiplexers. I cannot show you all of them, because the generated schematic it's too large for screen capture.
I suggest not to use an explicit loopback path with the multiplexor to decide when to write a new value to the register. Instead of that, modify your synchronous always to load a new value into the register only if that register is selected for writting:
always #(posedge clk or negedge reset)
begin
if(!reset) begin
r0eax <= 32'b0;
r1ecx <= 32'b0;
r2edx <= 32'b0;
r3ebx <= 32'b0;
r4esi <= 32'b0;
r5edi <= 32'b0;
r6esp <= 32'b0;
r7edi <= 32'b0;
end
else begin
if (select[0])
r0eax <= valW;
if (select[1])
r1ecx <= valW;
if (select[2])
r2edx <= valW;
if (select[3])
r3ebx <= valW;
if (select[4])
r4esi <= valW;
if (select[5])
r5edi <= valW;
if (select[6])
r6esp <= valW;
if (select[7])
r7edi <= valW;
end
end
This description allows the synthetizer to infer a register with CLK and CE inputs: the register will accept a new value from its D input if CE is enabled. If not, the value doesn't change. Your description makes the register to change its value on every clock cycle, whether is needed or not.
Now the circuit inferred is as this (it actually fits on screen!):
With this proposed solution, the first block, where the different reg_input_X signals are assigned, can be eliminated.
Tested using ISIM with ISE Webpack 12.4 and works :)