Haskell dollar operator application [duplicate] - haskell

This question already has answers here:
What does $ mean/do in Haskell?
(2 answers)
Closed 6 years ago.
I'm having trouble with understanding how function application works with currying in haskell.
If I have following function:
($) :: (a -> b) -> a -> b
I understand that to partially apply this function I need to provide (a -> b) function ($'s first argument).
Why then is it possible to apply a value first (i.e. reverse arguments)?
($ 0) :: Num a => (a -> b) -> b
What am I missing here?

($) is an operator. In Haskell, any operator can be written in a left-section (like (x $)) or a right-section (like ($ x)):
(x $) = (\y -> x $ y) = ($) x
($ x) = (\y -> y $ x) = flip ($) x
Note that the only exception to this rule is (-), in order to conveniently write negative numbers:
\x -> (x-) :: Num a => a -> a -> a -- equivalent to \x -> (-) x
\x -> (-x) :: Num a => a -> a -- equivalent to \x -> negate x
In case you want to tersely write (\y -> y - x), you can use subtract:
\x -> subtract x :: Num a => a -> a -> a -- equivalent to \x -> flip (-) x

($ 0) ≡ (\x -> x $ 0) ≡ (\x -> ($) x 0)
If ($) :: (a -> b) -> a -> b) and we applied second argument like (\x -> ($) x 0) we have :: Num a => (a -> b) -> b

You are confusing the infix notation of an operator with a function.
> :t (($) (+1))
(($) (+1)) :: Num b => b -> b
Here are some forms of expressions with $, for better understanding:
a $ b => ($) a b
($ b) => flip ($) b => (\b a -> ($) a b) b => \a -> ($) a b
(a $) => ($) a => \b -> ($) a b

Note also that in Haskell syntax, alphanumeric names are distinguished from punctuation names.
An alphanumeric function foo1 a b is prefix by default, and becomes infix if you add backticks: a `foo` b.
A punctuation-named function like $ or <*> is infix by default, and becomes prefix if you add parentheses ($) or (<*>). This is just syntax sugar for the programmer familiar with the Latin alphabet; it is an arbitrary but helpful distinction between alphanumeric names and punctuation names.
Both kinds of functions are just functions, they don't have the special semantic rules that we have for "operators" in C++ or Java. It's just the syntax rules around prefix/infix and backticks/parentheses that are different between punctuation-named functions and alphanumeric-named functions.

Related

How do I write (:)(.) on pointful form?

I have a hard time understanding what the function (:)(.) in haskell does. Could someone help me write it on pointful form, and explain step by step how to get there? The first step would be to expand the (:) so that we get ((.) :), but then I'm stuck.
It should be of type [(b->c)->(a->b)->a->c]->[(b->c)->(a->b)->a->c], but that doesn't help me, just makes me even more confused.
(:) (.)
Eta-expand:
\x -> (:) (.) x
Convert to infix notation:
\x -> (.) : x
I.e. x must be a list and we're prepending (.) to it (that's what : does: it prepends an element to a list).
(.) is a function, so x must be a list of functions.
(.) :: (b -> c) -> (a -> b) -> a -> c
, so x must have type
x :: [(b -> c) -> (a -> b) -> a -> c]
Well we can first convert the (:) data constructor, and the function (.) :: (b -> c) -> (a -> b) -> a -> c operator as a lambda expression:
(:) -> (\x y -> (x:y))
(.) -> (\f g t -> f (g t))
So that means that (:)(.) is short for:
(\x y -> (x:y)) (\f g t -> f (g t))
So now we can replace x with the lambda expression:
\y -> (\f g t -> f (g t)) : y
So the function is equal to ((.) :): a partial "cons" where we still need to fill in the tail, and the head is the dot operator.
So the type is a list of functions with the same signature as the dot operator [(b -> c) -> (a -> b) -> a -> c].
If we thus for example take as argument [], we have constructed a singleton list (a list with exactly one element): the dot operator.

Too many arguments for fmap

The first argument, that fmap is expected is a function with one argument.
fmap :: Functor f => (a -> b) -> f a -> f b
Then I tried as follow in prelude:
Prelude> x = fmap (\x y -> x * y)
As you can see, the first argument to fmap is a function, that has two arguments. Why does the compiler let it pass?
The function that I pass to fmap above has two arguments not one!
Haskell does not actually have functions with more (or less) than one argument. A "two-argument function" is really just a function that takes one argument and produces another function that takes another argument. That is, \x y -> x * y is just a syntactic short cut for \x -> \y -> x * y. This concept is known as currying.
So this should explain what's happening in your example. Your fmap will simply turn an f of numbers into an f of functions. So, for example, x [1,2,3] would produce the list [\y -> 1 * y, \y -> 2 * y, \y -> 3 * y] (a.k.a. [(1*), (2*), (3*)]).
You have defined a function. One of the fundamental aspects of functional programming that functions can be parameters, stored into variables, etc.
If we then query the type of x, we get:
Prelude> :t x
x :: (Functor f, Num a) => f a -> f (a -> a)
So x is now a function that takes as input a Functor with a applied on that function, and returns the an element of a type with the same functor, but applied with a -> a.
So you can for instance apply a list on x, like:
Prelude> :t x [1,4,2,5]
x [1,4,2,5] :: Num a => [a -> a]
So now we have a list of functions, that is equivalent to:
[\x -> 1*x, \x -> 4*x, \x -> 2*x, \x -> 5*x]

Why can't I compose before currying two arguments? [duplicate]

I am trying to compose a function of type (Floating a) => a -> a -> a with a function of type (Floating a) => a -> a to obtain a function of type (Floating a) => a -> a -> a. I have the following code:
test1 :: (Floating a) => a -> a -> a
test1 x y = x
test2 :: (Floating a) => a -> a
test2 x = x
testBoth :: (Floating a) => a -> a -> a
testBoth = test2 . test1
--testBoth x y = test2 (test1 x y)
However, when I compile it in GHCI, I get the following error:
/path/test.hs:8:11:
Could not deduce (Floating (a -> a)) from the context (Floating a)
arising from a use of `test2'
at /path/test.hs:8:11-15
Possible fix:
add (Floating (a -> a)) to the context of
the type signature for `testBoth'
or add an instance declaration for (Floating (a -> a))
In the first argument of `(.)', namely `test2'
In the expression: test2 . test1
In the definition of `testBoth': testBoth = test2 . test1
Failed, modules loaded: none.
Note that the commented-out version of testBoth compiles. The strange thing is that if I remove the (Floating a) constraints from all type signatures or if I change test1 to just take x instead of x and y, testBoth compiles.
I've searched StackOverflow, Haskell wikis, Google, etc. and not found anything about a restriction on function composition relevant to this particular situation. Does anyone know why this is happening?
\x y -> test2 (test1 x y)
== \x y -> test2 ((test1 x) y)
== \x y -> (test2 . (test1 x)) y
== \x -> test2 . (test1 x)
== \x -> (test2 .) (test1 x)
== \x -> ((test2 .) . test1) x
== (test2 .) . test1
These two things are not like each other.
test2 . test1
== \x -> (test2 . test1) x
== \x -> test2 (test1 x)
== \x y -> (test2 (test1 x)) y
== \x y -> test2 (test1 x) y
You're problem doesn't have anything to do with Floating, though the typeclass does make your error harder to understand. Take the below code as an example:
test1 :: Int -> Char -> Int
test1 = undefined
test2 :: Int -> Int
test2 x = undefined
testBoth = test2 . test1
What is the type of testBoth? Well, we take the type of (.) :: (b -> c) -> (a -> b) -> a -> c and turn the crank to get:
b ~ Int (the argument of test2 unified with the first argument of (.))
c ~ Int (the result of test2 unified with the result of the first argument of (.))
a ~ Int (test1 argument 1 unified with argument 2 of (.))
b ~ Char -> Int (result of test1 unified with argument 2 of (.))
but wait! that type variable, 'b' (#4, Char -> Int), has to unify with the argument type of test2 (#1, Int). Oh No!
How should you do this? A correct solution is:
testBoth x = test2 . test1 x
There are other ways, but I consider this the most readable.
Edit: So what was the error trying to tell you? It was saying that unifying Floating a => a -> a with Floating b => b requires an instance Floating (a -> a) ... while that's true, you really didn't want GHC to try and treat a function as a floating point number.
Your problem has nothing to do with Floating, but with the fact that you want to compose a function with two arguments and a function with one argument in a way that doesn't typecheck. I'll give you an example in terms of a composed function reverse . foldr (:) [].
reverse . foldr (:) [] has the type [a] -> [a] and works as expected: it returns a reversed list (foldr (:) [] is essentially id for lists).
However reverse . foldr (:) doesn't type check. Why?
When types match for function composition
Let's review some types:
reverse :: [a] -> [a]
foldr (:) :: [a] -> [a] -> [a]
foldr (:) [] :: [a] -> [a]
(.) :: (b -> c) -> (a -> b) -> a -> c
reverse . foldr (:) [] typechecks, because (.) instantiates to:
(.) :: ([a] -> [a]) -> ([a] -> [a]) -> [a] -> [a]
In other words, in type annotation for (.):
a becomes [a]
b becomes [a]
c becomes [a]
So reverse . foldr (:) [] has the type [a] -> [a].
When types don't match for function composition
reverse . foldr (:) doesn't type check though, because:
foldr (:) :: [a] -> [a] -> [a]
Being the right operant of (.), it would instantiate its type from a -> b to [a] -> ([a] -> [a]). That is, in:
(b -> c) -> (a -> b) -> a -> c
Type variable a would be replaced with [a]
Type variable b would be replaced with [a] -> [a].
If type of foldr (:) was a -> b, the type of (. foldr (:)) would be:
(b -> c) -> a -> c`
(foldr (:) is applied as a right operant to (.)).
But because type of foldr (:) is [a] -> ([a] -> [a]), the type of (. foldr (:)) is:
(([a] -> [a]) -> c) -> [a] -> c
reverse . foldr (:) doesn't type check, because reverse has the type [a] -> [a], not ([a] -> [a]) -> c!
Owl operator
When people first learn function composition in Haskell, they learn that when you have the last argument of function at the right-most of the function body, you can drop it both from arguments and from the body, replacing or parentheses (or dollar-signs) with dots. In other words, the below 4 function definitions are equivalent:
f a x xs = g ( h a ( i x xs))
f a x xs = g $ h a $ i x xs
f a x xs = g . h a . i x $ xs
f a x = g . h a . i x
So people get an intuition that says “I just remove the right-most local variable from the body and from the arguments”, but this intuition is faulty, because once you removed xs,
f a x = g . h a . i x
f a = g . h a . i
are not equivalent! You should understand when function composition typechecks and when it doesn't. If the above 2 were equivalent, then it would mean that the below 2 are also equivalent:
f a x xs = g . h a . i x $ xs
f a x xs = g . h a . i $ x xs
which makes no sense, because x is not a function with xs as a parameter. x is a parameter to function i, and xs is a parameter to function (i x).
There is a trick to make a function with 2 parameters point-free. And that is to use an “owl” operator:
f a x xs = g . h a . i x xs
f a = g . h a .: i
where (.:) = (.).(.)
The above two function definitions are equivalent. Read more on “owl” operator.
References
Haskell programming becomes much easier and straightforward, once you understand functions, types, partial application and currying, function composition and dollar-operator. To nail these concepts, read the following StackOverflow answers:
On types and function composition
On higher-order functions, currying, and function composition
On Haskell type system
On point-free style
On const
On const, flip and types
On curry and uncurry
Read also:
Haskell: difference between . (dot) and $ (dollar sign)
Haskell function composition (.) and function application ($) idioms: correct use

Project Euler 3 - Haskell

I'm working my way through the Project Euler problems in Haskell. I have got a solution for Problem 3 below, I have tested it on small numbers and it works, however due to the brute force implementation by deriving all the primes numbers first it is exponentially slow for larger numbers.
-- Project Euler 3
module Main
where
import System.IO
import Data.List
main = do
hSetBuffering stdin LineBuffering
putStrLn "This program returns the prime factors of a given integer"
putStrLn "Please enter a number"
nums <- getPrimes
putStrLn "The prime factors are: "
print (sort nums)
getPrimes = do
userNum <- getLine
let n = read userNum :: Int
let xs = [2..n]
return $ getFactors n (primeGen xs)
--primeGen :: (Integral a) => [a] -> [a]
primeGen [] = []
primeGen (x:xs) =
if x >= 2
then x:primeGen (filter (\n->n`mod` x/=0) xs)
else 1:[2]
--getFactors
getFactors :: (Integral a) => a -> [a] -> [a]
getFactors n xs = [ x | x <- xs, n `mod` x == 0]
I have looked at the solution here and can see how it is optimised by the first guard in factor. What I dont understand is this:
primes = 2 : filter ((==1) . length . primeFactors) [3,5..]
Specifically the first argument of filter.
((==1) . length . primeFactors)
As primeFactors is itself a function I don't understand how it is used in this context. Could somebody explain what is happening here please?
If you were to open ghci on the command line and type
Prelude> :t filter
You would get an output of
filter :: (a -> Bool) -> [a] -> [a]
What this means is that filter takes 2 arguments.
(a -> Bool) is a function that takes a single input, and returns a Bool.
[a] is a list of any type, as longs as it is the same type from the first argument.
filter will loop over every element in the list of its second argument, and apply it to the function that is its first argument. If the first argument returns True, it is added to the resulting list.
Again, in ghci, if you were to type
Prelude> :t (((==1) . length . primeFactors))
You should get
(((==1) . length . primeFactors)) :: a -> Bool
(==1) is a partially applied function.
Prelude> :t (==)
(==) :: Eq a => a -> a -> Bool
Prelude> :t (==1)
(==1) :: (Eq a, Num a) => a -> Bool
It only needs to take a single argument instead of two.
Meaning that together, it will take a single argument, and return a Boolean.
The way it works is as follows.
primeFactors will take a single argument, and calculate the results, which is a [Int].
length will take this list, and calculate the length of the list, and return an Int
(==1) will
look to see if the values returned by length is equal to 1.
If the length of the list is 1, that means it is a prime number.
(.) :: (b -> c) -> (a -> b) -> a -> c is the composition function, so
f . g = \x -> f (g x)
We can chain more than two functions together with this operator
f . g . h === \x -> f (g (h x))
This is what is happening in the expression ((==1) . length . primeFactors).
The expression
filter ((==1) . length . primeFactors) [3,5..]
is filtering the list [3, 5..] using the function (==1) . length . primeFactors. This notation is usually called point free, not because it doesn't have . points, but because it doesn't have any explicit arguments (called "points" in some mathematical contexts).
The . is actually a function, and in particular it performs function composition. If you have two functions f and g, then f . g = \x -> f (g x), that's all there is to it! The precedence of this operator lets you chain together many functions quite smoothly, so if you have f . g . h, this is the same as \x -> f (g (h x)). When you have many functions to chain together, the composition operator is very useful.
So in this case, you have the functions (==1), length, and primeFactors being compose together. (==1) is a function through what is called operator sections, meaning that you provide an argument to one side of an operator, and it results in a function that takes one argument and applies it to the other side. Other examples and their equivalent lambda forms are
(+1) => \x -> x + 1
(==1) => \x -> x == 1
(++"world") => \x -> x ++ "world"
("hello"++) => \x -> "hello" ++ x
If you wanted, you could re-write this expression using a lambda:
(==1) . length . primeFactors => (\x0 -> x0 == 1) . length . primeFactors
=> (\x1 -> (\x0 -> x0 == 1) (length (primeFactors x1)))
Or a bit cleaner using the $ operator:
(\x1 -> (\x0 -> x0 == 1) $ length $ primeFactors x1)
But this is still a lot more "wordy" than simply
(==1) . length . primeFactors
One thing to keep in mind is the type signature for .:
(.) :: (b -> c) -> (a -> b) -> a -> c
But I think it looks better with some extra parentheses:
(.) :: (b -> c) -> (a -> b) -> (a -> c)
This makes it more clear that this function takes two other functions and returns a third one. Pay close attention the the order of the type variables in this function. The first argument to . is a function (b -> c), and the second is a function (a -> b). You can think of it as going right to left, rather than the left to right behavior that we're used to in most OOP languages (something like myObj.someProperty.getSomeList().length()). We can get this functionality by defining a new operator that has the reverse order of arguments. If we use the F# convention, our operator is called |>:
(|>) :: (a -> b) -> (b -> c) -> (a -> c)
(|>) = flip (.)
Then we could have written this as
filter (primeFactors |> length |> (==1)) [3, 5..]
And you can think of |> as an arrow "feeding" the result of one function into the next.
This simply means, keep only the odd numbers that have only one prime factor.
In other pseodo-code: filter(x -> length(primeFactors(x)) == 1) for any x in [3,5,..]

Haskell: composing function with two floating arguments fails

I am trying to compose a function of type (Floating a) => a -> a -> a with a function of type (Floating a) => a -> a to obtain a function of type (Floating a) => a -> a -> a. I have the following code:
test1 :: (Floating a) => a -> a -> a
test1 x y = x
test2 :: (Floating a) => a -> a
test2 x = x
testBoth :: (Floating a) => a -> a -> a
testBoth = test2 . test1
--testBoth x y = test2 (test1 x y)
However, when I compile it in GHCI, I get the following error:
/path/test.hs:8:11:
Could not deduce (Floating (a -> a)) from the context (Floating a)
arising from a use of `test2'
at /path/test.hs:8:11-15
Possible fix:
add (Floating (a -> a)) to the context of
the type signature for `testBoth'
or add an instance declaration for (Floating (a -> a))
In the first argument of `(.)', namely `test2'
In the expression: test2 . test1
In the definition of `testBoth': testBoth = test2 . test1
Failed, modules loaded: none.
Note that the commented-out version of testBoth compiles. The strange thing is that if I remove the (Floating a) constraints from all type signatures or if I change test1 to just take x instead of x and y, testBoth compiles.
I've searched StackOverflow, Haskell wikis, Google, etc. and not found anything about a restriction on function composition relevant to this particular situation. Does anyone know why this is happening?
\x y -> test2 (test1 x y)
== \x y -> test2 ((test1 x) y)
== \x y -> (test2 . (test1 x)) y
== \x -> test2 . (test1 x)
== \x -> (test2 .) (test1 x)
== \x -> ((test2 .) . test1) x
== (test2 .) . test1
These two things are not like each other.
test2 . test1
== \x -> (test2 . test1) x
== \x -> test2 (test1 x)
== \x y -> (test2 (test1 x)) y
== \x y -> test2 (test1 x) y
You're problem doesn't have anything to do with Floating, though the typeclass does make your error harder to understand. Take the below code as an example:
test1 :: Int -> Char -> Int
test1 = undefined
test2 :: Int -> Int
test2 x = undefined
testBoth = test2 . test1
What is the type of testBoth? Well, we take the type of (.) :: (b -> c) -> (a -> b) -> a -> c and turn the crank to get:
b ~ Int (the argument of test2 unified with the first argument of (.))
c ~ Int (the result of test2 unified with the result of the first argument of (.))
a ~ Int (test1 argument 1 unified with argument 2 of (.))
b ~ Char -> Int (result of test1 unified with argument 2 of (.))
but wait! that type variable, 'b' (#4, Char -> Int), has to unify with the argument type of test2 (#1, Int). Oh No!
How should you do this? A correct solution is:
testBoth x = test2 . test1 x
There are other ways, but I consider this the most readable.
Edit: So what was the error trying to tell you? It was saying that unifying Floating a => a -> a with Floating b => b requires an instance Floating (a -> a) ... while that's true, you really didn't want GHC to try and treat a function as a floating point number.
Your problem has nothing to do with Floating, but with the fact that you want to compose a function with two arguments and a function with one argument in a way that doesn't typecheck. I'll give you an example in terms of a composed function reverse . foldr (:) [].
reverse . foldr (:) [] has the type [a] -> [a] and works as expected: it returns a reversed list (foldr (:) [] is essentially id for lists).
However reverse . foldr (:) doesn't type check. Why?
When types match for function composition
Let's review some types:
reverse :: [a] -> [a]
foldr (:) :: [a] -> [a] -> [a]
foldr (:) [] :: [a] -> [a]
(.) :: (b -> c) -> (a -> b) -> a -> c
reverse . foldr (:) [] typechecks, because (.) instantiates to:
(.) :: ([a] -> [a]) -> ([a] -> [a]) -> [a] -> [a]
In other words, in type annotation for (.):
a becomes [a]
b becomes [a]
c becomes [a]
So reverse . foldr (:) [] has the type [a] -> [a].
When types don't match for function composition
reverse . foldr (:) doesn't type check though, because:
foldr (:) :: [a] -> [a] -> [a]
Being the right operant of (.), it would instantiate its type from a -> b to [a] -> ([a] -> [a]). That is, in:
(b -> c) -> (a -> b) -> a -> c
Type variable a would be replaced with [a]
Type variable b would be replaced with [a] -> [a].
If type of foldr (:) was a -> b, the type of (. foldr (:)) would be:
(b -> c) -> a -> c`
(foldr (:) is applied as a right operant to (.)).
But because type of foldr (:) is [a] -> ([a] -> [a]), the type of (. foldr (:)) is:
(([a] -> [a]) -> c) -> [a] -> c
reverse . foldr (:) doesn't type check, because reverse has the type [a] -> [a], not ([a] -> [a]) -> c!
Owl operator
When people first learn function composition in Haskell, they learn that when you have the last argument of function at the right-most of the function body, you can drop it both from arguments and from the body, replacing or parentheses (or dollar-signs) with dots. In other words, the below 4 function definitions are equivalent:
f a x xs = g ( h a ( i x xs))
f a x xs = g $ h a $ i x xs
f a x xs = g . h a . i x $ xs
f a x = g . h a . i x
So people get an intuition that says “I just remove the right-most local variable from the body and from the arguments”, but this intuition is faulty, because once you removed xs,
f a x = g . h a . i x
f a = g . h a . i
are not equivalent! You should understand when function composition typechecks and when it doesn't. If the above 2 were equivalent, then it would mean that the below 2 are also equivalent:
f a x xs = g . h a . i x $ xs
f a x xs = g . h a . i $ x xs
which makes no sense, because x is not a function with xs as a parameter. x is a parameter to function i, and xs is a parameter to function (i x).
There is a trick to make a function with 2 parameters point-free. And that is to use an “owl” operator:
f a x xs = g . h a . i x xs
f a = g . h a .: i
where (.:) = (.).(.)
The above two function definitions are equivalent. Read more on “owl” operator.
References
Haskell programming becomes much easier and straightforward, once you understand functions, types, partial application and currying, function composition and dollar-operator. To nail these concepts, read the following StackOverflow answers:
On types and function composition
On higher-order functions, currying, and function composition
On Haskell type system
On point-free style
On const
On const, flip and types
On curry and uncurry
Read also:
Haskell: difference between . (dot) and $ (dollar sign)
Haskell function composition (.) and function application ($) idioms: correct use

Resources