Multi-term named entities in Stanford Named Entity Recognizer - nlp

I'm using the Stanford Named Entity Recognizer http://nlp.stanford.edu/software/CRF-NER.shtml and it's working fine. This is
List<List<CoreLabel>> out = classifier.classify(text);
for (List<CoreLabel> sentence : out) {
for (CoreLabel word : sentence) {
if (!StringUtils.equals(word.get(AnswerAnnotation.class), "O")) {
namedEntities.add(word.word().trim());
}
}
}
However the problem I'm finding is identifying names and surnames. If the recognizer encounters "Joe Smith", it is returning "Joe" and "Smith" separately. I'd really like it to return "Joe Smith" as one term.
Could this be achieved through the recognizer maybe through a configuration? I didn't find anything in the javadoc till now.
Thanks!

This is because your inner for loop is iterating over individual tokens (words) and adding them separately. You need to change things to add whole names at once.
One way is to replace the inner for loop with a regular for loop with a while loop inside it which takes adjacent non-O things of the same class and adds them as a single entity.*
Another way would be to use the CRFClassifier method call:
List<Triple<String,Integer,Integer>> classifyToCharacterOffsets(String sentences)
which will give you whole entities, which you can extract the String form of by using substring on the original input.
*The models that we distribute use a simple raw IO label scheme, where things are labeled PERSON or LOCATION, and the appropriate thing to do is simply to coalesce adjacent tokens with the same label. Many NER systems use more complex labels such as IOB labels, where codes like B-PERS indicates where a person entity starts. The CRFClassifier class and feature factories support such labels, but they're not used in the models we currently distribute (as of 2012).

The counterpart of the classifyToCharacterOffsets method is that (AFAIK) you can't access the label of the entities.
As proposed by Christopher, here is an example of a loop which assembles "adjacent non-O things". This example also counts the number of occurrences.
public HashMap<String, HashMap<String, Integer>> extractEntities(String text){
HashMap<String, HashMap<String, Integer>> entities =
new HashMap<String, HashMap<String, Integer>>();
for (List<CoreLabel> lcl : classifier.classify(text)) {
Iterator<CoreLabel> iterator = lcl.iterator();
if (!iterator.hasNext())
continue;
CoreLabel cl = iterator.next();
while (iterator.hasNext()) {
String answer =
cl.getString(CoreAnnotations.AnswerAnnotation.class);
if (answer.equals("O")) {
cl = iterator.next();
continue;
}
if (!entities.containsKey(answer))
entities.put(answer, new HashMap<String, Integer>());
String value = cl.getString(CoreAnnotations.ValueAnnotation.class);
while (iterator.hasNext()) {
cl = iterator.next();
if (answer.equals(
cl.getString(CoreAnnotations.AnswerAnnotation.class)))
value = value + " " +
cl.getString(CoreAnnotations.ValueAnnotation.class);
else {
if (!entities.get(answer).containsKey(value))
entities.get(answer).put(value, 0);
entities.get(answer).put(value,
entities.get(answer).get(value) + 1);
break;
}
}
if (!iterator.hasNext())
break;
}
}
return entities;
}

I had the same problem, so I looked it up, too. The method proposed by Christopher Manning is efficient, but the delicate point is to know how to decide which kind of separator is appropriate. One could say only a space should be allowed, e.g. "John Zorn" >> one entity. However, I may find the form "J.Zorn", so I should also allow certain punctuation marks. But what about "Jack, James and Joe" ? I might get 2 entities instead of 3 ("Jack James" and "Joe").
By digging a bit in the Stanford NER classes, I actually found a proper implementation of this idea. They use it to export entities under the form of single String objects. For instance, in the method PlainTextDocumentReaderAndWriter.printAnswersTokenizedInlineXML, we have:
private void printAnswersInlineXML(List<IN> doc, PrintWriter out) {
final String background = flags.backgroundSymbol;
String prevTag = background;
for (Iterator<IN> wordIter = doc.iterator(); wordIter.hasNext();) {
IN wi = wordIter.next();
String tag = StringUtils.getNotNullString(wi.get(AnswerAnnotation.class));
String before = StringUtils.getNotNullString(wi.get(BeforeAnnotation.class));
String current = StringUtils.getNotNullString(wi.get(CoreAnnotations.OriginalTextAnnotation.class));
if (!tag.equals(prevTag)) {
if (!prevTag.equals(background) && !tag.equals(background)) {
out.print("</");
out.print(prevTag);
out.print('>');
out.print(before);
out.print('<');
out.print(tag);
out.print('>');
} else if (!prevTag.equals(background)) {
out.print("</");
out.print(prevTag);
out.print('>');
out.print(before);
} else if (!tag.equals(background)) {
out.print(before);
out.print('<');
out.print(tag);
out.print('>');
}
} else {
out.print(before);
}
out.print(current);
String afterWS = StringUtils.getNotNullString(wi.get(AfterAnnotation.class));
if (!tag.equals(background) && !wordIter.hasNext()) {
out.print("</");
out.print(tag);
out.print('>');
prevTag = background;
} else {
prevTag = tag;
}
out.print(afterWS);
}
}
They iterate over each word, checking if it has the same class (answer) than the previous, as explained before. For this, they take advantage of the fact expressions considered as not being entities are flagged using the so-called backgroundSymbol (class "O"). They also use the property BeforeAnnotation, which represents the string separating the current word from the previous one. This last point allows solving the problem I initially raised, regarding the choice of an appropriate separator.

Code for the above:
<List> result = classifier.classifyToCharacterOffsets(text);
for (Triple<String, Integer, Integer> triple : result)
{
System.out.println(triple.first + " : " + text.substring(triple.second, triple.third));
}

List<List<CoreLabel>> out = classifier.classify(text);
for (List<CoreLabel> sentence : out) {
String s = "";
String prevLabel = null;
for (CoreLabel word : sentence) {
if(prevLabel == null || prevLabel.equals(word.get(CoreAnnotations.AnswerAnnotation.class)) ) {
s = s + " " + word;
prevLabel = word.get(CoreAnnotations.AnswerAnnotation.class);
}
else {
if(!prevLabel.equals("O"))
System.out.println(s.trim() + '/' + prevLabel + ' ');
s = " " + word;
prevLabel = word.get(CoreAnnotations.AnswerAnnotation.class);
}
}
if(!prevLabel.equals("O"))
System.out.println(s + '/' + prevLabel + ' ');
}
I just wrote a small logic and it's working fine. what I did is group words with same label if they are adjacent.

Make use of the classifiers already provided to you. I believe this is what you are looking for:
private static String combineNERSequence(String text) {
String serializedClassifier = "edu/stanford/nlp/models/ner/english.all.3class.distsim.crf.ser.gz";
AbstractSequenceClassifier<CoreLabel> classifier = null;
try {
classifier = CRFClassifier
.getClassifier(serializedClassifier);
} catch (ClassCastException e) {
// TODO Auto-generated catch block
e.printStackTrace();
} catch (ClassNotFoundException e) {
// TODO Auto-generated catch block
e.printStackTrace();
} catch (IOException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
System.out.println(classifier.classifyWithInlineXML(text));
// FOR TSV FORMAT //
//System.out.print(classifier.classifyToString(text, "tsv", false));
return classifier.classifyWithInlineXML(text);
}

Here is my full code, I use Stanford core NLP and write algorithm to concatenate Multi Term names.
import edu.stanford.nlp.ling.CoreAnnotations;
import edu.stanford.nlp.ling.CoreLabel;
import edu.stanford.nlp.pipeline.Annotation;
import edu.stanford.nlp.pipeline.StanfordCoreNLP;
import edu.stanford.nlp.util.CoreMap;
import org.apache.log4j.Logger;
import java.util.ArrayList;
import java.util.List;
import java.util.Properties;
/**
* Created by Chanuka on 8/28/14 AD.
*/
public class FindNameEntityTypeExecutor {
private static Logger logger = Logger.getLogger(FindNameEntityTypeExecutor.class);
private StanfordCoreNLP pipeline;
public FindNameEntityTypeExecutor() {
logger.info("Initializing Annotator pipeline ...");
Properties props = new Properties();
props.setProperty("annotators", "tokenize, ssplit, pos, lemma, ner");
pipeline = new StanfordCoreNLP(props);
logger.info("Annotator pipeline initialized");
}
List<String> findNameEntityType(String text, String entity) {
logger.info("Finding entity type matches in the " + text + " for entity type, " + entity);
// create an empty Annotation just with the given text
Annotation document = new Annotation(text);
// run all Annotators on this text
pipeline.annotate(document);
List<CoreMap> sentences = document.get(CoreAnnotations.SentencesAnnotation.class);
List<String> matches = new ArrayList<String>();
for (CoreMap sentence : sentences) {
int previousCount = 0;
int count = 0;
// traversing the words in the current sentence
// a CoreLabel is a CoreMap with additional token-specific methods
for (CoreLabel token : sentence.get(CoreAnnotations.TokensAnnotation.class)) {
String word = token.get(CoreAnnotations.TextAnnotation.class);
int previousWordIndex;
if (entity.equals(token.get(CoreAnnotations.NamedEntityTagAnnotation.class))) {
count++;
if (previousCount != 0 && (previousCount + 1) == count) {
previousWordIndex = matches.size() - 1;
String previousWord = matches.get(previousWordIndex);
matches.remove(previousWordIndex);
previousWord = previousWord.concat(" " + word);
matches.add(previousWordIndex, previousWord);
} else {
matches.add(word);
}
previousCount = count;
}
else
{
count=0;
previousCount=0;
}
}
}
return matches;
}
}

Another approach to deal with multi words entities.
This code combines multiple tokens together if they have the same annotation and go in a row.
Restriction:
If the same token has two different annotations, the last one will be saved.
private Document getEntities(String fullText) {
Document entitiesList = new Document();
NERClassifierCombiner nerCombClassifier = loadNERClassifiers();
if (nerCombClassifier != null) {
List<List<CoreLabel>> results = nerCombClassifier.classify(fullText);
for (List<CoreLabel> coreLabels : results) {
String prevLabel = null;
String prevToken = null;
for (CoreLabel coreLabel : coreLabels) {
String word = coreLabel.word();
String annotation = coreLabel.get(CoreAnnotations.AnswerAnnotation.class);
if (!"O".equals(annotation)) {
if (prevLabel == null) {
prevLabel = annotation;
prevToken = word;
} else {
if (prevLabel.equals(annotation)) {
prevToken += " " + word;
} else {
prevLabel = annotation;
prevToken = word;
}
}
} else {
if (prevLabel != null) {
entitiesList.put(prevToken, prevLabel);
prevLabel = null;
}
}
}
}
}
return entitiesList;
}
Imports:
Document: org.bson.Document;
NERClassifierCombiner: edu.stanford.nlp.ie.NERClassifierCombiner;

Related

WordProcessingDocument not preserving whitespace

I'm writing a C# program using XML and Linq that reads in data from tables stored in a word document and inserts it into an excel spreadsheet. The code I have so far does this, however it does not preserve any new lines (in the word doc the "new line" is done by pressing the enter key). Using the debugger, I can see that the new lines aren't even being read in. For example, if the text I want to copy is:
Something like this
And another line
And maybe even a third line
It gets read in as:
Something like thisAnd another lineAnd maybe even a third line
I can't separate the lines by a character as the words could be anything. This is what I have so far:
internal override Dictionary<string, string> GetContent()
{
Dictionary<string, string> contents = new Dictionary<string, string>();
using (WordprocessingDocument doc = WordprocessingDocument.Open(MainForm.WordFileDialog.FileName, false))
{
List<Table> tables = doc.MainDocumentPart.Document.Descendants<Table>().ToList();
foreach (Table table in tables)
{
TableRow headerRow = table.Elements<TableRow>().ElementAt(0);
TableCell tableSectionTitle;
try
{
tableSectionTitle = headerRow.Elements<TableCell>().ElementAt(0);
}
catch (ArgumentOutOfRangeException)
{
continue;
}
List<TableRow> rows = table.Descendants<TableRow>().ToList();
foreach (TableRow row in rows)
{
TableCell headerCell = row.Elements<TableCell>().ElementAt(0);
if (headerCell.InnerText.ToLower().Contains("first item"))
{
contents.Add("first item", row.Elements<TableCell>().ElementAt(1).InnerText);
}
else if (headerCell.InnerText.ToLower().Contains("second item:"))
{
char[] split = { ':' };
Int32 count = 2;
string str = row.Elements<TableCell>().ElementAt(0).InnerText;
String[] newStr = str.Split(split, count, StringSplitOptions.None);
contents.Add("second item:", newStr[1]);
}
**continues for many more else if statements**
else
{
continue;
}
}
}
return contents;
}
}
I'm new to using XML, so any help would be appreciated!

Generic Template String like in Python in Dart

In python, I often use strings as templates, e.g.
templateUrl = '{host}/api/v3/{container}/{resourceid}'
params = {'host': 'www.api.com', 'container': 'books', 'resourceid': 10}
api.get(templateUrl.format(**params))
This allows for easy base class setup and the like. How can I do the same in dart?
I'm assuming I will need to create a utility function to parse the template and substitute manually but really hoping there is something ready to use.
Perhaps a TemplateString class with a format method that takes a Map of name/value pairs to substitute into the string.
Note: the objective is to have a generic "format" or "interpolation" function that doesn't need to know in advance what tags or names will exist in the template.
Further clarification: the templates themselves are not resolved when they are set up. Specifically, the template is defined in one place in the code and then used in many other places.
Dart does not have a generic template string functionality that would allow you to insert values into your template at runtime.
Dart only allows you to interpolate strings with variables using the $ syntax in strings, e.g. var string = '$domain/api/v3/${actions.get}'. You would need to have all the variables defined in your code beforehand.
However, you can easily create your own implementation.
Implementation
You pretty much explained how to do it in your question yourself: you pass a map and use it to have generic access to the parameters using the [] operator.
To convert the template string into something that is easy to access, I would simply create another List containing fixed components, like /api/v3/ and another Map that holds generic components with their name and their position in the template string.
class TemplateString {
final List<String> fixedComponents;
final Map<int, String> genericComponents;
int totalComponents;
TemplateString(String template)
: fixedComponents = <String>[],
genericComponents = <int, String>{},
totalComponents = 0 {
final List<String> components = template.split('{');
for (String component in components) {
if (component == '') continue; // If the template starts with "{", skip the first element.
final split = component.split('}');
if (split.length != 1) {
// The condition allows for template strings without parameters.
genericComponents[totalComponents] = split.first;
totalComponents++;
}
if (split.last != '') {
fixedComponents.add(split.last);
totalComponents++;
}
}
}
String format(Map<String, dynamic> params) {
String result = '';
int fixedComponent = 0;
for (int i = 0; i < totalComponents; i++) {
if (genericComponents.containsKey(i)) {
result += '${params[genericComponents[i]]}';
continue;
}
result += fixedComponents[fixedComponent++];
}
return result;
}
}
Here would be an example usage, I hope that the result is what you expected:
main() {
final templateUrl = TemplateString('{host}/api/v3/{container}/{resourceid}');
final params = <String, dynamic>{'host': 'www.api.com', 'container': 'books', 'resourceid': 10};
print(templateUrl.format(params)); // www.api.com/api/v3/books/10
}
Here it is as a Gist.
Here is my solution:
extension StringFormating on String {
String format(List<String> values) {
int index = 0;
return replaceAllMapped(new RegExp(r'{.*?}'), (_) {
final value = values[index];
index++;
return value;
});
}
String formatWithMap(Map<String, String> mappedValues) {
return replaceAllMapped(new RegExp(r'{(.*?)}'), (match) {
final mapped = mappedValues[match[1]];
if (mapped == null)
throw ArgumentError(
'$mappedValues does not contain the key "${match[1]}"');
return mapped;
});
}
}
This gives you a very similar functionality to what python offers:
"Test {} with {}!".format(["it", "foo"]);
"Test {a} with {b}!".formatWithMap({"a": "it", "b": "foo"})
both return "Test it with foo!"
It's even more easy in Dart. Sample code below :
String host = "www.api.com"
String container = "books"
int resourceId = 10
String templateUrl = "$host/api/v3/$container/${resourceId.toString()}"
With the map, you can do as follows :
Map<String, String> params = {'host': 'www.api.com', 'container': 'books', 'resourceid': 10}
String templateUrl = "${params['host']}/api/v3/${params['container']}/${params['resourceId']}"
Note : The above code defines Map as <String, String>. You might want <String, Dynamic> (and use .toString())
Wouldn't it be simplest to just make it a function with named arguments? You could add some input validation if you wanted to.
String templateUrl({String host = "", String container = "", int resourceid = 0 }) {
return "$host/api/v3/$container/$resourceId";
}
void main() {
api.get(templateUrl(host:"www.api.com", container:"books", resourceid:10));
}

String comparison not working for sharepoint multiline text values

I am fetching data from sharepoint list for a multi line column.
And then split the data by space and comparing it to other string but despite the value in both the strings being same it gives false result.
Please follow the below code:
string[] strBodys = SPHttpUtility.ConvertSimpleHtmlToText(Convert.ToString(workflowProperties.ListItem[SCMSConstants.lstfldBody]), Convert.ToString(workflowProperties.ListItem[SCMSConstants.lstfldBody]).Length).Split(' ');
bool hasKwrdInBody = false;
foreach (SPItem oItem in oColl)
{//get all the keywords
string[] strkeyWrds = SPHttpUtility.ConvertSimpleHtmlToText(Convert.ToString(oItem[SCMSConstants.lstfldKWConfigKeywordsIntrName]), Convert.ToString(oItem[SCMSConstants.lstfldKWConfigKeywordsIntrName]).Length).Split(',');
//in body
foreach (string strKW in strkeyWrds)
{
string KWValue = strKW.Trim(' ').ToLower();
foreach (string strBdy in strBodys)
{
string BodyValue = strBdy.Trim(' ').ToLower();
//if (strKW.ToLower().Equals(strBdy.ToLower()))
if(KWValue == BodyValue) //here it always gives false result
{
hasKwrdInBody = true;
break;
}
}
if (hasKwrdInBody)
break;
}
if (!hasKwrdInSbjct && !hasKwrdInBody)
{
continue;
}
else
{
//set business unit to current groups rule
bsnsUnitLookupFld = new SPFieldLookupValue(Convert.ToString(oItem[SCMSConstants.lstfldBsnsUnit]));
asgndTo = new SPFieldUserValue(objWeb,Convert.ToString(oItem[SCMSConstants.lstfldKWConfigAssignedToIntrName])).User;
groupName = Convert.ToString(oItem[SCMSConstants.lstfldKWConfigAssignedToGroupIntrName]).Split('#').Last();
break;
}
}
Please mind that i am trying to get multi line text from sharepoint list
Please provide your suggestions.
That also depends on the exact type of your Multiline field (e.g Plain Text or RichText, etc.).
Maybe it would be clear if you just added some logging writing out the values you are comparing.
For details on how to get the value of a Multiline textfield check Accessing Multiple line of text programmatically
and here for RichText
I got it working by comparing and counting the characters in both the strings. Actually some UTC codes were embedded in to the string. First I removed those characters using regular expression and then compared them and it worked like a charm.
Here is the code snippet, might help some one.
string[] strBodys = SPHttpUtility.ConvertSimpleHtmlToText(Convert.ToString(workflowProperties.ListItem[SCMSConstants.lstfldBody]), Convert.ToString(workflowProperties.ListItem[SCMSConstants.lstfldBody]).Length).Split(' ');
bool hasKwrdInBody = false;
foreach (SPItem oItem in oColl)
{//get all the keywords
string[] strkeyWrds = SPHttpUtility.ConvertSimpleHtmlToText(Convert.ToString(oItem[SCMSConstants.lstfldKWConfigKeywordsIntrName]), Convert.ToString(oItem[SCMSConstants.lstfldKWConfigKeywordsIntrName]).Length).Split(',');
//in body
foreach (string strKW in strkeyWrds)
{
string KWValue = strKW.Trim(' ').ToLower();
KWValue = Regex.Replace(KWValue, #"[^\u0000-\u007F]", string.Empty); //here replaced the utc codes
foreach (string strBdy in strBodys)
{
string BodyValue = strBdy.Trim(' ').ToLower();
BodyValue = Regex.Replace(BodyValue, #"\t|\n|\r", string.Empty); // new code to replace utc code
BodyValue = Regex.Replace(BodyValue, #"[^\u0000-\u007F]", string.Empty); //new code to replace utc code
//if (strKW.ToLower().Equals(strBdy.ToLower()))
if(KWValue == BodyValue) //here it always gives false result
{
hasKwrdInBody = true;
break;
}
}
if (hasKwrdInBody)
break;
}
if (!hasKwrdInSbjct && !hasKwrdInBody)
{
continue;
}
else
{
//set business unit to current groups rule
bsnsUnitLookupFld = new SPFieldLookupValue(Convert.ToString(oItem[SCMSConstants.lstfldBsnsUnit]));
asgndTo = new SPFieldUserValue(objWeb,Convert.ToString(oItem[SCMSConstants.lstfldKWConfigAssignedToIntrName])).User;
groupName = Convert.ToString(oItem[SCMSConstants.lstfldKWConfigAssignedToGroupIntrName]).Split('#').Last();
break;
}
}

How to pass multiple list types as a parameter using the same method variable

I'm trying to pass multiple list types as a parameter using the same method variable and then loop through the types based on which type as been past. I tried using a generic method but it's not working. Below are pseudo/example codes. The List SAS_F_DISAGG_F and List SAS_C_DISAGG_C are SQL/Entity, and the List DisaggReportGroups is a class object. I'm trying to pass the entity lists.
protected void GetReportGroup()
{
DisaggReportGroups rptGroup = new DisaggReportGroups();
List<DisaggReportGroups> disagreportGroup = new List<DisaggReportGroups>();
disagreportGroup.Add(rptGroup);
DisaggregatedReportData disagReportData = new DisaggregatedReportData();
foreach (var reportGroup in disagreportGroup)
{
if (reportGroup.FuturesOnly == "Futures Only, " & reportGroup.Agriculture == "Agriculture")
{
List<SAS_F_DISAGG_F> futONlyDisagReportData = disagReportData.GetFuturesOnlyReportData(reportGroup.Agriculture).ToList();
CreateLongFormatReport<List<SAS_F_DISAGG_F>>(reportGroup.AgricultureFilenameFOLF, reportGroup.FuturesOnly, reportGroup.Agriculture, futONlyDisagReportData);
}
else if (reportGroup.FOCombined == "Futures and Options Combined, " & reportGroup.Agriculture == "Agriculture")
{
List<SAS_C_DISAGG_C> combinedDisagReportData = disagReportData.GetFOCombinedReportData(reportGroup.Agriculture).ToList();
CreateLongFormatReport<List<SAS_C_DISAGG_C>>(reportGroup.AgricultureFilenameFOCombinedLF, reportGroup.FOCombined, reportGroup.Agriculture, combinedDisagReportData);
}
}
}
protected void CreateFormatReport<T>(string filename, string disagCategory, string commSubGp, List<T> reportData)
{
using (FileStream fileStream = new FileStream(Server.MapPath(#"~/Includes/") + filename, FileMode.Create))
{
using (StreamWriter writer = new StreamWriter(fileStream))
{
foreach (var value in reportData)
{
string FuturesOnly = "Futures Only, ";
string FOCombined = "Futures and Options Combined, ";
string reportCategory = "";
if (disagCategory == FuturesOnly)
{
reportCategory = FuturesOnly;
}
else if (disagCategory == FOCombined)
{
reportCategory = FOCombined;
}
string row01 = String.Format("{0, -10}{1, 29}{2, 8}", value.MKTTITL.PadRight(120), "Code -", value.Conmkt);
string row02 = String.Format("{0, -10}{1, 7}{2, 14}", "Blah Blah - ", reportCategory, value.DAT1TITL);
string row03 = String.Format("{0, 3}{1, 3}{2, 8:0,0}{3, 3}{4, 8:0,0}{5, 11:0,0}{6, 11:0,0}{7, 11:0,0}{8, 11:0,0}{9, 13:0,0}{10, 11:0,0}{11, 11:0,0}{12, 13:0,0}{13, 10:0,0}{14, 9:0,0}{15, 3}{16, 8:0,0}{17, 10:0,0}", "All",
colon, value.TA01, colon, value.TA02, value.TA03, value.TA04, value.TA05, value.TA06, value.TA07, value.TA08, value.TA09, value.TA10, value.TA11, value.TA12, colon, value.TA15, value.TA16);
string row04 = String.Format("{0, 3}{1, 3}{2, 8:0,0}{3, 3}{4, 8:0,0}{5, 11:0,0}{6, 11:0,0}{7, 11:0,0}{8, 11:0.##}{9, 13:0,0}{10, 11:0,0}{11, 11:0,0}{12, 13:0,0}{13, 10:0,0}{14, 9:0,0}{15, 3}{16, 8:0,0}{17, 10:0,0}", "Old",
colon, value.TO01, colon, value.TO02, value.TO03, value.TO04, value.TO05, value.TO06, value.TO07, value.TO08, value.TO09, value.TO10, value.TO11, value.TO12, colon, value.TO15, value.TO16);
writer.Write(row01);
writer.WriteLine(row02);
writer.WriteLine(row03);
writer.WriteLine(row04);
} //end foreach
writer.Close();
} //end of stream writer
}
}
Thanks for your help.
I managed to solve this problem myself so I'm posting my solution for others that may need the same type of help. The solution is to use Reflection within the foreach iteration.
foreach (var value in ReportData)
{
//Reflection can be used
string TA01 = value.GetType().GetProperty("TA01").GetValue(value).ToString();
//...
//...
//do more stuff/coding...
}
Then in the String.Format change "value.TA01" to "TA01". Do the same for all other variables.
Hope this help.

Sentiment Analysis(SentiWordNet) - Judging the context of a sentence

I am trying to find whether a sentence is Positive or Negative in the following steps:
1.) Retrieving the Parts of speech(verbs, nouns, adjectives etc) from the sentence using the Stanford NLP parser.
2.) Using the SentiWordNet to find the Positive and Negative values related to each Part of Speech.
3.) Summing up the Positive and Negative values obtained to calculate a Net Positive and Net Negative value related to a sentence.
But the problem is that, the SentiWordNet return a list of Positive/Negative values based on different senses/contexts. Is it possible to pass a particular sentence along with the part of speech to the SentiWordNet parser, so that it can judge the sense/context automatically and returns only one pair of Positive and Negative value?
Or is there any other alternate solution to this problem?
Thanks.
SentoWordNet Demo Code
This may help you.
// Copyright 2013 Petter Törnberg
//
// This demo code has been kindly provided by Petter Törnberg <pettert#chalmers.se>
// for the SentiWordNet website.
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
import java.io.BufferedReader;
import java.io.FileReader;
import java.io.IOException;
import java.util.HashMap;
import java.util.Map;
public class SentiWordNetDemoCode {
private Map<String, Double> dictionary;
public SentiWordNetDemoCode(String pathToSWN) throws IOException {
// This is our main dictionary representation
dictionary = new HashMap<String, Double>();
// From String to list of doubles.
HashMap<String, HashMap<Integer, Double>> tempDictionary = new HashMap<String, HashMap<Integer, Double>>();
BufferedReader csv = null;
try {
csv = new BufferedReader(new FileReader(pathToSWN));
int lineNumber = 0;
String line;
while ((line = csv.readLine()) != null) {
lineNumber++;
// If it's a comment, skip this line.
if (!line.trim().startsWith("#")) {
// We use tab separation
String[] data = line.split("\t");
String wordTypeMarker = data[0];
// Example line:
// POS ID PosS NegS SynsetTerm#sensenumber Desc
// a 00009618 0.5 0.25 spartan#4 austere#3 ascetical#2
// ascetic#2 practicing great self-denial;...etc
// Is it a valid line? Otherwise, through exception.
if (data.length != 6) {
throw new IllegalArgumentException(
"Incorrect tabulation format in file, line: "
+ lineNumber);
}
// Calculate synset score as score = PosS - NegS
Double synsetScore = Double.parseDouble(data[2])
- Double.parseDouble(data[3]);
// Get all Synset terms
String[] synTermsSplit = data[4].split(" ");
// Go through all terms of current synset.
for (String synTermSplit : synTermsSplit) {
// Get synterm and synterm rank
String[] synTermAndRank = synTermSplit.split("#");
String synTerm = synTermAndRank[0] + "#"
+ wordTypeMarker;
int synTermRank = Integer.parseInt(synTermAndRank[1]);
// What we get here is a map of the type:
// term -> {score of synset#1, score of synset#2...}
// Add map to term if it doesn't have one
if (!tempDictionary.containsKey(synTerm)) {
tempDictionary.put(synTerm,
new HashMap<Integer, Double>());
}
// Add synset link to synterm
tempDictionary.get(synTerm).put(synTermRank,
synsetScore);
}
}
}
// Go through all the terms.
for (Map.Entry<String, HashMap<Integer, Double>> entry : tempDictionary
.entrySet()) {
String word = entry.getKey();
Map<Integer, Double> synSetScoreMap = entry.getValue();
// Calculate weighted average. Weigh the synsets according to
// their rank.
// Score= 1/2*first + 1/3*second + 1/4*third ..... etc.
// Sum = 1/1 + 1/2 + 1/3 ...
double score = 0.0;
double sum = 0.0;
for (Map.Entry<Integer, Double> setScore : synSetScoreMap
.entrySet()) {
score += setScore.getValue() / (double) setScore.getKey();
sum += 1.0 / (double) setScore.getKey();
}
score /= sum;
dictionary.put(word, score);
}
} catch (Exception e) {
e.printStackTrace();
} finally {
if (csv != null) {
csv.close();
}
}
}
public double extract(String word, String pos) {
return dictionary.get(word + "#" + pos);
}
public static void main(String [] args) throws IOException {
if(args.length<1) {
System.err.println("Usage: java SentiWordNetDemoCode <pathToSentiWordNetFile>");
return;
}
String pathToSWN = args[0];
SentiWordNetDemoCode sentiwordnet = new SentiWordNetDemoCode(pathToSWN);
System.out.println("good#a "+sentiwordnet.extract("good", "a"));
System.out.println("bad#a "+sentiwordnet.extract("bad", "a"));
System.out.println("blue#a "+sentiwordnet.extract("blue", "a"));
System.out.println("blue#n "+sentiwordnet.extract("blue", "n"));
}
}
We can pass the pos to sentiwordnet parser.
Download pattern python module
from pattern.en import wordnet
print wordnet.synsets("kill",pos="VB")[0].weight
wordnet.synsets returns list of synsets
and from that we are selecting 1st item
Output will be a tuple of (polarity,subjectivity)
Hope this helps...

Resources