static vs stack-dynamic share memory - programming-languages

I am reading the concept of language ch 5 and find that
static's disadvantage : subprograms cannot share same storage.
stack-dynamic's advantage : without recursion, it is not without merit subprograms can share the same memory space for theirs locals.
and I think that due to static bound from begin to terminal, all subprogram should can see it and use
it
like the code I test
#include<iostream>
static int test = 0;
void func1(){ cout << test++ << endl;}
void func2(){ cout << test++ << endl;}
int main(){
func1();
func2();
}
and stack-dynamic allocation each time execute the function, like being push to stack(LIFO), so they
are in different momory space.
I don't know where is the error in my thought?
Thx in advance.

You program runs in a dedicated memory space.
Static variables have global scope.
Given that, I suppose "Subprograms cannot share same storage" means that static variable is instantiated only once and it's the same object during the entire lifetime of the program.
This has several consequences:
If your independent functions need storage as part of their execution, they shouldn't address the same static variables because they will affect the other functions using the same variables.
If your functions can run in parallel (e.g. on several processors) and they address same static variables, these variable become a shared resource, meaning it must be protected against parallel access (which can corrupt the data and result in incorrect behavior).
Dynamically allocated/stack variables use the same memory space in which the program runs, but they can be instantiated many times, and the instances are independent of each other. E.g., if stack variable is defined inside a function, it's allocated upon function entry and released upon function exit. If the function is entered again, new variable will be created. It's same memory space, but different stack frame in this space.

Related

C++/CLI marshal_context native strings corrupted

The following is C++/CLI code gets compiled into a DLL, and is called by a C# application:
void Foo(String^ strManaged) {
marshal_context^ context = gcnew marshal_context();
FooUnmanaged(context->marshal_as<const char*>(strManaged));
}
FooUnmanaged() reads the const char*, runs some processing which takes about a second, and then reads the const char* again, for example:
void FooUnmanaged(const char* str) {
// 1
Log(str);
// Process things unrelated to 'str'
// ...
// 2
Log(str);
}
On occasions, the contents of str changes between the first and the second read inside FooUnmanaged(), as if that memory had been reused for some other purposes. This happens regardless of the processing done in FooUnmanaged(), as long as it takes a noticeable amount of time (I guess, long enough that the GC has a chance to trigger).
This does not happen if Foo is written either this way
void Foo(String^ strManaged) {
marshal_context^ context = gcnew marshal_context();
FooUnmanaged(context->marshal_as<const char*>(strManaged));
delete context; // addded
}
or that way
void Foo(String^ strManaged) {
marshal_context context; // created on the stack
FooUnmanaged(context.marshal_as<const char*>(strManaged));
}
Is the original code incorrect? Why does it not correctly reserve the memory of the const char* for the lifetime of context? Or can the lifetime of context be shorter than I think it is (the scope of Foo())?
Answer by #HansPassant:
Yes, that's a lifetime issue. .NET uses an aggressive collector, it has no idea that the native code relies on the context. The first snippet requires GC::KeepAlive(context); at the end. The last snippet is how it was meant to be used, stack semantics emulates RAII, the auto-generated Dispose() call keeps it alive in similar fashion. And avoids the temporary memory leak. If FooUnmanaged() stores the passed pointer then you can't use marshal_context.
This is confirmed by this article:
The lifetime of [local variables] can depend on the way the program was built. In debug builds, a local variable lasts for as long as the method is on the stack. In release builds, the JIT is able to look at the program structure to work out the last point within the execution that a variable can be used by the method and will discard it when it is no longer required.

Any possible alternate method to use static variable in multi threading

I am in a suitation where i have to use static variable for multiple threads. Is there is any alternate methods which can work for the same. Kindly ignores ridiculousness.
Threads are also functions fundamentally.
So static variable will have same behavior in terms of threads as how it works with normal fucntions.
Because static variable stores in a section of process other than the stack segment , any change in static variable in one thread will reflect in another thread.

Static member with static mutex and thread-safety

I have a template class similar to this one:
template <typename T>
class Foo {
public:
static void show () {
unique_lock<mutex> l {mtx};
for (const auto& v : vec) {
cout << v << endl;
}
}
static void add (T s) {
unique_lock<mutex> l {mtx};
vec.push_back (s);
}
private:
static mutex mtx;
static vector<T> vec;
};
template <typename T> mutex Foo<T>::mtx;
template <typename T> vector<T> Foo<T>::vec;
And usage of this class looks like this:
Foo<string>::add ("d");
Foo<string>::add ("dr");
Foo<string>::add ("dre");
Foo<string>::add ("drew");
Foo<string>::show ();
Could you tell me if this class is thread-safe? And if it is not, how to make a thread safe version?
If I understand it correctly when we have a class with member functions (not static) and mutex (not static), we prevent race condition of the single object which has been passed across threads, right? And when we have something similar to this we prevent race condition not for the object but for the class instead - in this case for particular type, or am I wrong?
Looks good to me. Up and to a point.
mtx is 'guarding' vec to ensure that the iteration in show() can not be taking place while the vector is being modified during add().
Consider calling it vec_mtx if that is its role.
Up and to a point?
Firstly, your use doesn't (in fact) indicate any threading taking place so I don't (quite) know what you're trying to achieve.
For example if all those adds were taking place in one thread and show in another, your code (obviously) won't ensure that they have all taken place before show.
It will only ensure that (logically) it takes place either before all of them, strictly between two of them or after all of them.
Although not applicable to your use case if you retained references to string objects you passed in or used a type T with a 'shallow' copy constructor then you might be in trouble.
Consider Foo::add(buffer); and continue modifying buffer such that show() is executing in one thread while strcat(buffer,.) is executing on another and buffer is temporarily not '\0' terminated. Boom! Book a ticket to Seg Fault City (where the grass aint green and the girls aint pretty).
You need to look hard (real hard) at what data is being shared and how.
Almost all unqualified statements 'X is thread-safe' are false for all X.
You should always (always) qualify what uses they are safe for and/or how far their safety extends.
That goes 10 times for templates.
Almost all template 'guarantees' can be blown by using some kind of C array (or complex structure holding a pointer or referenced elsewhere, passing it into template in a thread here while smacking it about over there. Your efforts to make an internal copy will themselves be unsafe!
There's a recurring fallacy that if you share data through some kind of thread-safe exchange structure such as a queue you get some kind of thread-safe guarantee and you never need to think about it again and can go back to your single threaded thinking.
Here endeth the lesson.
NB: In theory std::string could be implemented on a memory starved environment that aggressively 'pools' copy strings in a way that exposes you to race conditions you haven't even imagined. Theory you understand.

How do two or more threads share memory on the heap that they have allocated?

As the title says, how do two or more threads share memory on the heap that they have allocated? I've been thinking about it and I can't figure out how they can do it. Here is my understanding of the process, presumably I am wrong somewhere.
Any thread can add or remove a given number of bytes on the heap by making a system call which returns a pointer to this data, presumably by writing to a register which the thread can then copy to the stack.
So two threads A and B can allocate as much memory as they want. But I don't see how thread A could know where the memory that thread B has allocated is located. Nor do I know how either thread could know where the other thread's stack is located. Multi-threaded programs share the heap and, I believe, can access one another's stack but I can't figure out how.
I tried searching for this question but only found language specific versions that abstract away the details.
Edit:
I am trying not to be language or OS specific but I am using Linux and am looking at it from a low level perspective, assembly I guess.
My interpretation of your question: How can thread A get to know a pointer to the memory B is using? How can they exchange data?
Answer: They usually start with a common pointer to a common memory area. That allows them to exchange other data including pointers to other data with each other.
Example:
Main thread allocates some shared memory and stores its location in p
Main thread starts two worker threads, passing the pointer p to them
The workers can now use p and work on the data pointed to by p
And in a real language (C#) it looks like this:
//start function ThreadProc and pass someData to it
new Thread(ThreadProc).Start(someData)
Threads usually do not access each others stack. Everything starts from one pointer passed to the thread procedure.
Creating a thread is an OS function. It works like this:
The application calls the OS using the standard ABI/API
The OS allocates stack memory and internal data structures
The OS "forges" the first stack frame: It sets the instruction pointer to ThreadProc and "pushes" someData onto the stack. I say "forge" because this first stack frame does not arise naturally but is created by the OS artificially.
The OS schedules the thread. ThreadProc does not know it has been setup on a fresh stack. All it knows is that someData is at the usual stack position where it would expect it.
And that is how someData arrives in ThreadProc. This is the way the first, initial data item is shared. Steps 1-3 are executed synchronously by the parent thread. 4 happens on the child thread.
A really short answer from a bird's view (1000 miles above):
Threads are execution paths of the same process, and the heap actually belongs to the process (and as a result shared by the threads). Each threads just needs its own stack to function as a separate unit of work.
Threads can share memory on a heap if they both use the same heap. By default most languages/frameworks have a single default heap that code can use to allocate memory from the heap. In unmanaged languages you generally make explicit calls to allocate heap memory. In C, that might be malloc, etc. for example. In managed languages heap allocation is usually automatic and how allocation is done depends on the language--usually through the use of the new operator. but, that depends slightly on context. If you provide the OS or language context you're asking about, I might be able to provide more detail.
A Thread shared with other threads belonging to the same process: its code section, data section and other operating system resources such as open files and signals.
The part you are missing is static memory containing static variables.
This memory is allocated when the program is started, and assigned known adresses (determined at the linking time). All threads can access this memory without exchanging any data runtime, because the addresses are effectively hardcoded.
A simple example might look like this:
// Global variable.
std::atomic<int> common_var;
void thread1() {
common_var = compute_some_value();
}
void thread2() {
do_something();
int current_value = common_var;
do_more();
}
And of course the global value may be a pointer, that can be used to exchange heap memory. The producer allocates some objects, the consumer takes and uses them.
// Global variable.
std::atomic<bool> produced;
SomeData* data_pointer;
void producer_thread() {
while (true) {
if (!produced) {
SomeData* new_data = new SomeData();
data_pointer = new_data;
// Let the other thread know there is something to read.
produced = true;
}
}
}
void consumer_thread() {
while (true) {
if (produced) {
SomeData* my_data = data_pointer;
data_pointer = nullptr;
// Let the other thread know we took the data.
produced = false;
do_something_with(my_data);
delete my_data;
}
}
}
Please note: these are not examples of good concurrent code, but they show the general idea without too much clutter.

What does threadsafe mean?

Recently I tried to Access a textbox from a thread (other than the UI thread) and an exception was thrown. It said something about the "code not being thread safe" and so I ended up writing a delegate (sample from MSDN helped) and calling it instead.
But even so I didn't quite understand why all the extra code was necessary.
Update:
Will I run into any serious problems if I check
Controls.CheckForIllegalCrossThread..blah =true
Eric Lippert has a nice blog post entitled What is this thing you call "thread safe"? about the definition of thread safety as found of Wikipedia.
3 important things extracted from the links :
“A piece of code is thread-safe if it functions correctly during
simultaneous execution by multiple threads.”
“In particular, it must satisfy the need for multiple threads to
access the same shared data, …”
“…and the need for a shared piece of data to be accessed by only one
thread at any given time.”
Definitely worth a read!
In the simplest of terms threadsafe means that it is safe to be accessed from multiple threads. When you are using multiple threads in a program and they are each attempting to access a common data structure or location in memory several bad things can happen. So, you add some extra code to prevent those bad things. For example, if two people were writing the same document at the same time, the second person to save will overwrite the work of the first person. To make it thread safe then, you have to force person 2 to wait for person 1 to complete their task before allowing person 2 to edit the document.
Wikipedia has an article on Thread Safety.
This definitions page (you have to skip an ad - sorry) defines it thus:
In computer programming, thread-safe describes a program portion or routine that can be called from multiple programming threads without unwanted interaction between the threads.
A thread is an execution path of a program. A single threaded program will only have one thread and so this problem doesn't arise. Virtually all GUI programs have multiple execution paths and hence threads - there are at least two, one for processing the display of the GUI and handing user input, and at least one other for actually performing the operations of the program.
This is done so that the UI is still responsive while the program is working by offloading any long running process to any non-UI threads. These threads may be created once and exist for the lifetime of the program, or just get created when needed and destroyed when they've finished.
As these threads will often need to perform common actions - disk i/o, outputting results to the screen etc. - these parts of the code will need to be written in such a way that they can handle being called from multiple threads, often at the same time. This will involve things like:
Working on copies of data
Adding locks around the critical code
Opening files in the appropriate mode - so if reading, don't open the file for write as well.
Coping with not having access to resources because they're locked by other threads/processes.
Simply, thread-safe means that a method or class instance can be used by multiple threads at the same time without any problems occurring.
Consider the following method:
private int myInt = 0;
public int AddOne()
{
int tmp = myInt;
tmp = tmp + 1;
myInt = tmp;
return tmp;
}
Now thread A and thread B both would like to execute AddOne(). but A starts first and reads the value of myInt (0) into tmp. Now for some reason, the scheduler decides to halt thread A and defer execution to thread B. Thread B now also reads the value of myInt (still 0) into it's own variable tmp. Thread B finishes the entire method so in the end myInt = 1. And 1 is returned. Now it's Thread A's turn again. Thread A continues. And adds 1 to tmp (tmp was 0 for thread A). And then saves this value in myInt. myInt is again 1.
So in this case the method AddOne() was called two times, but because the method was not implemented in a thread-safe way the value of myInt is not 2, as expected, but 1 because the second thread read the variable myInt before the first thread finished updating it.
Creating thread-safe methods is very hard in non-trivial cases. And there are quite a few techniques. In Java you can mark a method as synchronized, this means that only one thread can execute that method at a given time. The other threads wait in line. This makes a method thread-safe, but if there is a lot of work to be done in a method, then this wastes a lot of space. Another technique is to 'mark only a small part of a method as synchronized' by creating a lock or semaphore, and locking this small part (usually called the critical section). There are even some methods that are implemented as lock-less thread-safe, which means that they are built in such a way that multiple threads can race through them at the same time without ever causing problems, this can be the case when a method only executes one atomic call. Atomic calls are calls that can't be interrupted and can only be done by one thread at a time.
In real world example for the layman is
Let's suppose you have a bank account with the internet and mobile banking and your account have only $10.
You performed transfer balance to another account using mobile banking, and the meantime, you did online shopping using the same bank account.
If this bank account is not threadsafe, then the bank allows you to perform two transactions at the same time and then the bank will become bankrupt.
Threadsafe means that an object's state doesn't change if simultaneously multiple threads try to access the object.
You can get more explanation from the book "Java Concurrency in Practice":
A class is thread‐safe if it behaves correctly when accessed from multiple threads, regardless of the scheduling or interleaving of the execution of those threads by the runtime environment, and with no additional synchronization or other coordination on the part of the calling code.
A module is thread-safe if it guarantees it can maintain its invariants in the face of multi-threaded and concurrence use.
Here, a module can be a data-structure, class, object, method/procedure or function. Basically scoped piece of code and related data.
The guarantee can potentially be limited to certain environments such as a specific CPU architecture, but must hold for those environments. If there is no explicit delimitation of environments, then it is usually taken to imply that it holds for all environments that the code can be compiled and executed.
Thread-unsafe modules may function correctly under mutli-threaded and concurrent use, but this is often more down to luck and coincidence, than careful design. Even if some module does not break for you under, it may break when moved to other environments.
Multi-threading bugs are often hard to debug. Some of them only happen occasionally, while others manifest aggressively - this too, can be environment specific. They can manifest as subtly wrong results, or deadlocks. They can mess up data-structures in unpredictable ways, and cause other seemingly impossible bugs to appear in other remote parts of the code. It can be very application specific, so it is hard to give a general description.
Thread safety: A thread safe program protects it's data from memory consistency errors. In a highly multi-threaded program, a thread safe program does not cause any side effects with multiple read/write operations from multiple threads on same objects. Different threads can share and modify object data without consistency errors.
You can achieve thread safety by using advanced concurrency API. This documentation page provides good programming constructs to achieve thread safety.
Lock Objects support locking idioms that simplify many concurrent applications.
Executors define a high-level API for launching and managing threads. Executor implementations provided by java.util.concurrent provide thread pool management suitable for large-scale applications.
Concurrent Collections make it easier to manage large collections of data, and can greatly reduce the need for synchronization.
Atomic Variables have features that minimize synchronization and help avoid memory consistency errors.
ThreadLocalRandom (in JDK 7) provides efficient generation of pseudorandom numbers from multiple threads.
Refer to java.util.concurrent and java.util.concurrent.atomic packages too for other programming constructs.
Producing Thread-safe code is all about managing access to shared mutable states. When mutable states are published or shared between threads, they need to be synchronized to avoid bugs like race conditions and memory consistency errors.
I recently wrote a blog about thread safety. You can read it for more information.
You are clearly working in a WinForms environment. WinForms controls exhibit thread affinity, which means that the thread in which they are created is the only thread that can be used to access and update them. That is why you will find examples on MSDN and elsewhere demonstrating how to marshall the call back onto the main thread.
Normal WinForms practice is to have a single thread that is dedicated to all your UI work.
I find the concept of http://en.wikipedia.org/wiki/Reentrancy_%28computing%29 to be what I usually think of as unsafe threading which is when a method has and relies on a side effect such as a global variable.
For example I have seen code that formatted floating point numbers to string, if two of these are run in different threads the global value of decimalSeparator can be permanently changed to '.'
//built in global set to locale specific value (here a comma)
decimalSeparator = ','
function FormatDot(value : real):
//save the current decimal character
temp = decimalSeparator
//set the global value to be
decimalSeparator = '.'
//format() uses decimalSeparator behind the scenes
result = format(value)
//Put the original value back
decimalSeparator = temp
To understand thread safety, read below sections:
4.3.1. Example: Vehicle Tracker Using Delegation
As a more substantial example of delegation, let's construct a version of the vehicle tracker that delegates to a thread-safe class. We store the locations in a Map, so we start with a thread-safe Map implementation, ConcurrentHashMap. We also store the location using an immutable Point class instead of MutablePoint, shown in Listing 4.6.
Listing 4.6. Immutable Point class used by DelegatingVehicleTracker.
class Point{
public final int x, y;
public Point() {
this.x=0; this.y=0;
}
public Point(int x, int y) {
this.x = x;
this.y = y;
}
}
Point is thread-safe because it is immutable. Immutable values can be freely shared and published, so we no longer need to copy the locations when returning them.
DelegatingVehicleTracker in Listing 4.7 does not use any explicit synchronization; all access to state is managed by ConcurrentHashMap, and all the keys and values of the Map are immutable.
Listing 4.7. Delegating Thread Safety to a ConcurrentHashMap.
public class DelegatingVehicleTracker {
private final ConcurrentMap<String, Point> locations;
private final Map<String, Point> unmodifiableMap;
public DelegatingVehicleTracker(Map<String, Point> points) {
this.locations = new ConcurrentHashMap<String, Point>(points);
this.unmodifiableMap = Collections.unmodifiableMap(locations);
}
public Map<String, Point> getLocations(){
return this.unmodifiableMap; // User cannot update point(x,y) as Point is immutable
}
public Point getLocation(String id) {
return locations.get(id);
}
public void setLocation(String id, int x, int y) {
if(locations.replace(id, new Point(x, y)) == null) {
throw new IllegalArgumentException("invalid vehicle name: " + id);
}
}
}
If we had used the original MutablePoint class instead of Point, we would be breaking encapsulation by letting getLocations publish a reference to mutable state that is not thread-safe. Notice that we've changed the behavior of the vehicle tracker class slightly; while the monitor version returned a snapshot of the locations, the delegating version returns an unmodifiable but “live” view of the vehicle locations. This means that if thread A calls getLocations and thread B later modifies the location of some of the points, those changes are reflected in the Map returned to thread A.
4.3.2. Independent State Variables
We can also delegate thread safety to more than one underlying state variable as long as those underlying state variables are independent, meaning that the composite class does not impose any invariants involving the multiple state variables.
VisualComponent in Listing 4.9 is a graphical component that allows clients to register listeners for mouse and keystroke events. It maintains a list of registered listeners of each type, so that when an event occurs the appropriate listeners can be invoked. But there is no relationship between the set of mouse listeners and key listeners; the two are independent, and therefore VisualComponent can delegate its thread safety obligations to two underlying thread-safe lists.
Listing 4.9. Delegating Thread Safety to Multiple Underlying State Variables.
public class VisualComponent {
private final List<KeyListener> keyListeners
= new CopyOnWriteArrayList<KeyListener>();
private final List<MouseListener> mouseListeners
= new CopyOnWriteArrayList<MouseListener>();
public void addKeyListener(KeyListener listener) {
keyListeners.add(listener);
}
public void addMouseListener(MouseListener listener) {
mouseListeners.add(listener);
}
public void removeKeyListener(KeyListener listener) {
keyListeners.remove(listener);
}
public void removeMouseListener(MouseListener listener) {
mouseListeners.remove(listener);
}
}
VisualComponent uses a CopyOnWriteArrayList to store each listener list; this is a thread-safe List implementation particularly suited for managing listener lists (see Section 5.2.3). Each List is thread-safe, and because there are no constraints coupling the state of one to the state of the other, VisualComponent can delegate its thread safety responsibilities to the underlying mouseListeners and keyListeners objects.
4.3.3. When Delegation Fails
Most composite classes are not as simple as VisualComponent: they have invariants that relate their component state variables. NumberRange in Listing 4.10 uses two AtomicIntegers to manage its state, but imposes an additional constraint—that the first number be less than or equal to the second.
Listing 4.10. Number Range Class that does Not Sufficiently Protect Its Invariants. Don't do this.
public class NumberRange {
// INVARIANT: lower <= upper
private final AtomicInteger lower = new AtomicInteger(0);
private final AtomicInteger upper = new AtomicInteger(0);
public void setLower(int i) {
//Warning - unsafe check-then-act
if(i > upper.get()) {
throw new IllegalArgumentException(
"Can't set lower to " + i + " > upper ");
}
lower.set(i);
}
public void setUpper(int i) {
//Warning - unsafe check-then-act
if(i < lower.get()) {
throw new IllegalArgumentException(
"Can't set upper to " + i + " < lower ");
}
upper.set(i);
}
public boolean isInRange(int i){
return (i >= lower.get() && i <= upper.get());
}
}
NumberRange is not thread-safe; it does not preserve the invariant that constrains lower and upper. The setLower and setUpper methods attempt to respect this invariant, but do so poorly. Both setLower and setUpper are check-then-act sequences, but they do not use sufficient locking to make them atomic. If the number range holds (0, 10), and one thread calls setLower(5) while another thread calls setUpper(4), with some unlucky timing both will pass the checks in the setters and both modifications will be applied. The result is that the range now holds (5, 4)—an invalid state. So while the underlying AtomicIntegers are thread-safe, the composite class is not. Because the underlying state variables lower and upper are not independent, NumberRange cannot simply delegate thread safety to its thread-safe state variables.
NumberRange could be made thread-safe by using locking to maintain its invariants, such as guarding lower and upper with a common lock. It must also avoid publishing lower and upper to prevent clients from subverting its invariants.
If a class has compound actions, as NumberRange does, delegation alone is again not a suitable approach for thread safety. In these cases, the class must provide its own locking to ensure that compound actions are atomic, unless the entire compound action can also be delegated to the underlying state variables.
If a class is composed of multiple independent thread-safe state variables and has no operations that have any invalid state transitions, then it can delegate thread safety to the underlying state variables.

Resources