Counting quantifiers - how - alloy

Let's say, I have to model a checkerboard and I want to say that at least 5 squares on the "A" vertical are empty. How do I do that in Alloy? Any other example with numbers different from 0 or 1 would be good. In other words, what do I do when "some" is not precise enough?
Thanks!

You can use the cardinality operator (#) to make assertions about the number of tuples in a relation, e.g.,
#r >= 5
says that the relation r must have at least 5 tuples.
You can also use the cardinality operator with an arbitrary expression, e.g.,
#board.cells >= 5
or
#{c: Cell | c in board.cells and ...} >= 5

Related

Why sum of products can be viewed as normal form in algebraic data types?

I am reading a haskell book (page 412). In this book, there is an explanation about normal form for sum of products:
All the existing algebraic rules for products and sums apply in type systems, and that includes the distributive property. Let’s take a look at how that works in arithmetic:
2 * (3 + 4)
2 * (7)
14
We can rewrite this with the multiplication distributed over the addition and obtain the same result:
2 * 3 + 2 * 4
(6) + (8)
14
This is known as a “sum of products.” In normal arithmetic, the expression is in normal form when it’s been reduced to a final result. However, if you think of the numerals in the above expressions as representations of set cardinality, then the sum of products expression is in normal form, as there is no computation to perform.
I've known that a normal form indiciates that an expression is fully reduced. In the above description, author of the book explains that sum of products can be seen as in normal form when we think of expression as representations of set cardinality. I don't understand that.
Cardinality of types means how many different values can be included in that type (like set). For example, Bool type in haskell has cardinality of 2, which is addition of 1 for False and 1 for True each.
Is sum of products (2 * 3 + 2 * 4) a normal form? This expression can be reduced furthre more because fully reduced expression would be 14. I don't understand why sum of products and cardinality of it are related to be normal form.
Let's declare ourselves some types to represent the numbers:
data Two = OneOfTwo | TwoOfTwo
data Three = OneOfThree | TwoOfThree | ThreeOfThree
data Four = ... (similar)
Now we can see that the number of possible values of type Two is, in fact, 2. Same for Three, Four, and Seven.
Now if we construct a sum type:
data A = A Two
This type just straight up wraps a value of Two, so the number of possible values of A is also 2. So far so good?
Now let's construct a more complex one:
data B = B1 Three | B2 Four
Now, this type wraps either a value of type Three or a value of type Four (but not both at the same time!) This means that the number of possible values would be 3 + 4. Following so far?
Now, going further:
data C = C Two B
This type wraps two values at the same time - one value of type Two and one value of type B. This means that the number of possible values of C is the number of possible combinations of Two and B, which, as we know from middle-school mathematics, would be their product, or 2 * (3 + 4) = 2 * (7) = 14.
But here's the trick: we can write down an equivalent type in a different way:
data CNew = C1 Two Three | C2 Two Four
See what I did there? For CNew, the set of all possible combinations between values of Two, Three, and Four is the same as for C. Look: in both cases it's either a value of Two combined with a value of Three, or it's a value of Two combined with a value of Four. Except in CNew they're combined directly, but in C they're combined via B.
But the formula for CNew would be different: 2 * 3 + 2 * 4 = (6) + (8) = 14. This is what the book means.
Now to answer this bit more directly:
Is sum of products (2 * 3 + 2 * 4) a normal form? This expression can be reduced further more because fully reduced expression would be 14
This would be true if we were dealing with integer numbers, but we're not. We can rewrite C in the form of CNew, because that gives us all the same possible combinations of values. But we cannot rewrite them as a type that has straight up 14 possible values without combining 2, 3, and 4. That would be a completely new, unrelated type, as opposed to a combination of Two, Three, and Four.
And a possible terminology misunderstanding:
Is sum of products (2 * 3 + 2 * 4) a normal form?
The term "normal form" doesn't mean "the shortest". This term is usually used to denote a form that is very regular, and therefore easier to work with, and, crucially, that can represent all possible cases in the domain. In this case, normal form is defined as a "sum of products".
Could it be a "product of sums" instead? No, it couldn't, because, while a product of sums can always be converted to a sum of products, the reverse is not always possible, and this means that not every possible type would be representable in the normal form defined as "product of sums".
Could it be "just the number of possible values", like 14? Again no, because converting to such form loses some information (see above).

Use dynamic programming to find a subset of numbers whose sum is closest to given number M

Given a set A of n positive integers a1, a2,... a3 and another positive integer M, I'm going to find a subset of numbers of A whose sum is closest to M. In other words, I'm trying to find a subset A′ of A such that the absolute value |M - 􀀀 Σ a∈A′| is minimized, where [ Σ a∈A′ a ] is the total sum of the numbers of A′. I only need to return the sum of the elements of the solution subset A′ without reporting the actual subset A′.
For example, if we have A as {1, 4, 7, 12} and M = 15. Then, the solution subset is A′ = {4, 12}, and thus the algorithm only needs to return 4 + 12 = 16 as the answer.
The dynamic programming algorithm for the problem should run in
O(nK) time in the worst case, where K is the sum of all numbers of A.
You construct a Dynamic Programming table of size n*K where
D[i][j] = Can you get sum j using the first i elements ?
The recursive relation you can use is: D[i][j] = D[i-1][j-a[i]] OR D[i-1][j] This relation can be derived if you consider that ith element can be added or left.
Time complexity : O(nK) where K=sum of all elements
Lastly you iterate over entire possible sum you can get, i.e. D[n][j] for j=1..K. Which ever is closest to M will be your answer.
For dynamic algorithm, we
Define the value we would work on
The set of values here is actually a table.
For this problem, we define value DP[i , j] as an indicator for whether we can obtain sum j using first i elements. (1 means yes, 0 means no)
Here 0<=i<=n, 0<=j<=K, where K is the sum of all elements in A
Define the recursive relation
DP[i+1 , j] = 1 , if ( DP[i,j] == 1 || DP[i,j-A[i+1]] ==1)
Else, DP[i+1, j] = 0.
Don't forget to initialize the table to 0 at first place. This solves boundary and trivial case.
Calculate the value you want
Through bottom-up implementation, you can finally fill the whole table.
Now, things become easy. You just need to find out the closest value to M in the table whose value is one.
Here, just work on DP[n][j], since n covers the whole set. Find the closest j to M whose value is 1.
Time complexity is O(kn), since you iterate k*n times in total.

Binary search - worst/avg case

I'm finding it difficult to understand why/how the worst and average case for searching for a key in an array/list using binary search is O(log(n)).
log(1,000,000) is only 6. log(1,000,000,000) is only 9 - I get that, but I don't understand the explanation. If one did not test it, how do we know that the avg/worst case is actually log(n)?
I hope you guys understand what I'm trying to say. If not, please let me know and I'll try to explain it differently.
Worst case
Every time the binary search code makes a decision, it eliminates half of the remaining elements from consideration. So you're dividing the number of elements by 2 with each decision.
How many times can you divide by 2 before you are down to only a single element? If n is the starting number of elements and x is the number of times you divide by 2, we can write this as:
n / (2 * 2 * 2 * ... * 2) = 1 [the '2' is repeated x times]
or, equivalently,
n / 2^x = 1
or, equivalently,
n = 2^x
So log base 2 of n gives you x, which is the number of decisions being made.
Finally, you might ask, if I used log base 2, why is it also OK to write it as log base 10, as you have done? The base does not matter because the difference is only a constant factor which is "ignored" by Big O notation.
Average case
I see that you also asked about the average case. Consider:
There is only one element in the array that can be found on the first try.
There are only two elements that can be found on the second try. (Because after the first try, we chose either the right half or the left half.)
There are only four elements that can be found on the third try.
You can see the pattern: 1, 2, 4, 8, ... , n/2. To express the same pattern going in the other direction:
Half the elements take the maximum number of decisions to find.
A quarter of the elements take one fewer decision to find.
etc.
Since half of the elements take the maximum amount of time, it doesn't matter how much less time the other elements take. We could assume that all elements take the maximum amount of time, and even if half of them actually take 0 time, our assumption would not be more than double whatever the true average is. We can ignore "double" since it is a constant factor. So the average case is the same as the worst case, as far as Big O notation is concerned.
For binary search, the array should be arranged in ascending or descending order.
In each step, the algorithm compares the search key value with the key value of the middle element of the array.
If the keys match, then a matching element has been found and its index, or position, is returned.
Otherwise, if the search key is less than the middle element's key, then the algorithm repeats its action on the sub-array to the left of the middle element.
Or, if the search key is greater,then the algorithm repeats its action on the sub-array to the right.
If the remaining array to be searched is empty, then the key cannot be found in the array and a special "not found" indication is returned.
So, a binary search is a dichotomic divide and conquer search algorithm. Thereby it takes logarithmic time for performing the search operation as the elements are reduced by half in each of the iteration.
For sorted lists which we can do a binary search, each "decision" made by the binary search compares your key to the middle element, if greater it takes the right half of the list, if less it will take the left half of the list (if it's a match it will return the element at that position) you effectively reduce your list by half for every decision yielding O(logn).
Binary search however, only works for sorted lists. For un-sorted lists you can do a straight search starting with the first element yielding a complexity of O(n).
O(logn) < O(n)
Although it entirely depends on how many searches you'll be doing, your inputs, etc what your best approach would be.
For Binary search the prerequisite is a sorted array as input.
• As the list is sorted:
• Certainly we don't have to check every word in the dictionary to look up a word.
• A basic strategy is to repeatedly halve our search range until we find the value.
• For example, look for 5 in the list of 9 #s below.v = 1 1 3 5 8 10 18 33 42
• We would first start in the middle: 8
• Since 5<8, we know we can look at just the first half: 1 1 3 5
• Looking at the middle # again, narrow down to 3 5
• Then we stop when we're down to one #: 5
How many comparison is needed: 4 =log(base 2)(9-1)=O(log(base2)n)
int binary_search (vector<int> v, int val) {
int from = 0;
int to = v.size()-1;
int mid;
while (from <= to) {
mid = (from+to)/2;
if (val == v[mid])
return mid;
else if (val > v[mid])
from = mid+1;
else
to = mid-1;
}
return -1;
}

Counting number of times an atom occurs in a table in J language

In J, to count the number of times an element occurs in a list in J is:
count =: 4 : '+/x=y'"0 1.
Alternatively, one can use the "member of interval" E. What is the equivalent expression, in J, for counting the number of times an "atom" occurs in a table?
I am also curious why the rank of "count" is given as 1 0 1, when it is specifically defined as a dyad. Why is the monad rank 1 also included? Can "count", as defined above be used as a monad?
I think what you are looking for is to make the table into a list using (Ravel) monadic ','and then proceed as before. So count becomes:
count=: +/#: (= ,) NB. tacit
count=: 4 : '+/ x = ,y' NB. explicit
Cheers, bob

Is Excel's FALSE like infinity?

Why does =FALSE<10000000000 evaluate as FALSE and =FALSE>10000000000 evaluate as TRUE? I have tried some different numbers and this seems to always be the case.
This is by design. Search help for "Troubleshoot Sort" to see the default sort order.
In an ascending sort, Microsoft Excel uses the following order.
Numbers: Numbers are sorted from the smallest negative number to the largest positive number.
Alphanumeric sort: When you sort alphanumeric text, Excel sorts left to right, character by character. For example, if a cell contains the text "A100," Excel places the cell after a cell that contains the entry "A1" and before a cell that contains the entry "A11."
Text and text that includes numbers are sorted in the following order:
0 1 2 3 4 5 6 7 8 9 (space) ! " # $ % & ( ) * , . / : ; ? # [ \ ] ^ _ ` { | } ~ + < = > A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Apostrophes (') and hyphens (-) are ignored, with one exception: If two text strings are the same except for a hyphen, the text with the hyphen is sorted last.
Logical values: In logical values, FALSE is placed before TRUE.
Error values: All error values are equal.
Blanks: Blanks are always placed last.
The default sort order matters because that is how Excel was designed to compare different data types. Logical values are always after text and numbers. Error values are always after that. Blanks are always last. When you use comparison operators (<, <=, =, etc.) it uses the same comparison algorithm as the sort (or more likely, the sort alogrithm uses the comparison operator code, which makes them identical).
TRUE<>1 according to the sort order, but --TRUE=1. The formula parser recognized that you're trying to negate something. If it's a Boolean value, it converts it to 0 or 1. There's nothing 0-ish or 1-ish about the Boolean value, it's just the result of an internal Type Coercion function. If you type --"SomeString" it does the same thing. It sends the string into the Type Coercion function that reports back 'Unable to coerce' and ends up as #VALUE! in the cell.
That's the 'Why it behaves that way' answer. I don't know the 'Why did they design it that way' answer.
Obviously the boolean TRUE/FALSE are different data types to numbers. Check this (http://msdn.microsoft.com/en-us/library/office/bb687869.aspx) to see that boolean variables are stored in 2-byte (or whatever a short integer is for a certain architecture). However this is the memory where the data is stored, because excel actually has a special data class for boolean vars. Specifically: xltypeNum for numbers, xltypeStr for strings, and xltypeBool for what we discuss.
The relations between same types is clear, now what TRUE<1000 does?? probably nothing meaningful-useful.
Ways to overcome this issue:
=ABS(BOOLEAN_VAR), i.e. =ABS(FALSE) --> 0 and =ABS(TRUE) --> 1
or
=INT(BOOLEAN_VAR), i.e. =INT(FALSE) --> 0 and =INT(TRUE) --> 1
or
=BOOLEAN_VAR*1, i.e. =FALSE*1 --> 0 and =TRUE*1 --> 1
or
=+BOOLEAN_VAR, i.e. =+FALSE --> 0 and =+TRUE --> 1
As you see in these ways you force excel to output a numeric type of data, either by providing the boolean into a function or using the boolean var in an expression.

Resources