optional parameters for immutable classes - groovy

I am not sure whether this is the right forum to ask this question, but it refers to code, so I am asking here.
In the book "Groovy in action", section 7.1.4 (named parameters), the author says that usage of named params "crops up frequently in creating immutable classes that have some parameters that are optional".
What has immutability of the class got to do with optional parameters? I thought these 2 topics were completely orthogonal.

crops up frequently in creating immutable classes that have some parameters that are optional
the sentence above is a bit blurry as there is no such thing as "class parameters", i can only assume it relates to method/constructor parameters.
when we're talking about constructors, Groovy's named parameters make sense when its about optional parameters:
#groovy.transform.Immutable
class Person {
String firstName
String lastName
Integer age
}
def p = new Person(age: 42, lastName: 'Doe')
The above example shows how to create an immutable Person instance. The firstName is not provided as named parameter, it's optional. In fact, with named parameters it's possible to specify any parameter combo when making the constructor call without actually having to implement constructors for all combinations.
There is also the possibility of using named parameters in instance/static method calls, as shown in this blog post by Mr. Haki.

The key to that statement is that if you're dealing with an immutable class, the implication is that you have only one chance to set state - in a constructor. Normally you'd be able to manipulate an (mutable) object via setters, one-at-a-time, to build up the desired state. For an immutable, you'd have to create a ctor for every possible set of instantiation states instead, if a facility like optional params were not available. For a class with many fields, this could get messy.

Related

Is the `def` keyword optional? If so, why use it?

I am aware that a variable can be dynamically typed with the def keyword in Groovy. But I have also noticed that in some circumstances it can be left out, such as when defining method parameters, eg func(p1, p2) instead of func(def p1, def p2). The latter form is discouraged.
I have noticed that this is extendable to all code - anytime you want to define a variable and set its value, eg var = 2 the def keyword can be safely left out. It only appears to be required if not instantiating the variable on creation, ie. def var1 so that it can be instantiated as a NullObject.
Is this the only time def is useful? Can it be safely left out in all other declarations, for example, of classes and methods?
Short answer: you can't. There are some use cases where skipping the type declaration (or def keyword) works, but it is not a general rule. For instance, Groovy scripts allow you to use variables without specific type declaration, e.g.
x = 10
However, it works because groovy.lang.Script class implements getProperty and setProperty methods that get triggered when you access a missing property. In this case, such a variable is promoted to be a global binding, not a local variable. If you try to do the same on any other class that does not implement those methods, you will end up getting groovy.lang.MissingPropertyException.
Skipping types in a method declaration is supported, both in dynamically compiled and statically compiled Groovy. But is it useful? It depends. In most cases, it's much better to declare the type for a better readability and documentation purpose. I would not recommend doing it in the public API - the user of your API will see Object type, while you may expect some specific type. It shows that this may work if your intention is to receive any object, no matter what is its specific type. (E.g. a method like dump(obj) could work like that.)
And last but not least, there is a way to skip type declaration in any context. You can use a final keyword for that.
class Foo {
final id = 1
void bar(final name) {
final greet = "Hello, "
println greet + name + "!"
}
}
This way you can get a code that compiles with dynamic compilation, as well as with static compilation enabled. Of course, using final keyword prevents you from re-assigning the variable, but for the compiler, this is enough information to infer the proper type.
For more information, you can check a similar question that was asked on SO some time ago: Groovy: "def" keyword vs concrete type
in Groovy it plays an important role in Global and Local variable
if the variable name is same with and without def
def is considered local and without def its global
I have explained here in detail https://stackoverflow.com/a/45994227/2986279
So if someone use with and without it will make a difference and can change things.

Puppet passing parameters from profile to module

I have a module "base" with an init.pp class which has some parameters as such:
class base (
$listen_ip = "xx.xx.xx.xx",
$listen_port = 3306,
$admin_username = 'admin',
$admin_password = 'admin',
)
{
...
}
Then I have created a profile "base" where I want to set some of the parameters:
class profile::base {
class { 'base':
$listen_ip = "xxx.xxx.xx.xx",
$listen_port => 6033,
}
}
Then the is a secondary profile where I want to set the username and password:
class profile::department::sales::base {
class { '::profile::base':
$admin_username = "some_user",
$admin_password => "some_pw",
}
}
However it's not possible to set the parameters from the "sales" profile.
The idea is that some values will be always the same for the base class and that some differ based on the department.
However it's not possible to set the parameters from the "sales" profile.
Not exactly. What is not allowed is using two different resource-like declarations for the same class while building one manifest. If you use even one then you must make certain that it is the first (or only) declaration of that class that the catalog builder evaluates.
To understand this, you need to appreciate that assigning parameter values is not the principal purpose of declarations such you are using. The principal purpose is rather to specify that the class in question should be included in the catalog in the first place. In service to that goal, values are bound to all the parameters of a class at the point where its first declaration is evaluated. Thus, your two class declarations do not supplement each other. Instead, they conflict with each other.
Even if the parameter values it specified for class base were identical to those declared by class profile::base, however, Puppet would still object to all uses of class profile::department::sales::base. To simplify evaluation and be absolutely certain to avoid inconsistency, it implements a stronger constraint than is actually required: that only the first-evaluated declaration of any given class may be a resource-like one.
Note: the latest docs actually specify an even stronger constraint than that: "Resource-like class declarations require that you declare a given class only once." In practice, however, this is a simplification (in every version of Puppet so far released since the introduction of parameterized classes). It is likely inspired by the fact that the order in which Puppet manifests are evaluated can be difficult to predict, so if you use include-like declarations along with a resource-like declaration of the same class, in different manifests, then it can be hard to ensure that the resource-like one is always evaluated first.
The idea is that some values will be always the same for the base
class and that some differ based on the department.
For most purposes it is best to avoid resource-like class declarations altogether, relying instead on external data (Hiera) for binding values to class parameters. Hiera recognizes a hierarchy of data sources (hence the name) and supports specifying different parameters at different levels, and even overriding data from one level at a higher-priority level.
My suggestion, then, is to leverage Hiera to assign appropriate parameter values to class base. There are many ways the specifics could play out.

Storing object in Esent persistent dictionary gives: Not supported for SetColumn Parameter error

I am trying to save an Object which implements an Interface say IInterface.
private PersistentDictionary<string, IInterface> Object = new PersistentDictionary<string, IInterface>(Environment.CurrentDirectory + #"\Object");
Since many classes implement the same interface(all of which need to cached), for a generic approach I want to store an Object of type IInterface in the dictionary.
So that anywhere I can pull out that object type cast it as IInterface and use that object's internal implementation of methods etc..
But, as soon as the Esent cache is initialized it throws this error:
Not supported for SetColumn
Parameter name: TColumn
Actual value was IInterface.
I have tried to not use XmlSerializer to do the same but is unable to deserialize an Interface type.Also, [Serializable] attribute cannot be used on top of a Interface, so I am stuck.
I have also tried to make all the implementations(classes) of the Interface as [Serializable] as a dying attempt but to no use.
Does any one know a way out ? Thanks in advance !!!
The only reason that only structs are supported (as well as some basic immutable classes such as string) is that the PersistentDictionary is meant to be a drop-in replacement for Dictionary, SortedDictionary and other similar classes.
Suppose I have the following code:
class MyClass
{
int val;
}
.
.
.
var dict = new Dictionary<int,MyClass>();
var x = new MyClass();
x.val = 1;
dict.Add(0,x);
x.val = 2;
var y = dict[0];
Console.WriteLine(y.val);
The output in this case would be 2. But if I'd used the PersistentDictionary instead of the regular one, the output would be 1. The class was created with value 1, and then changed after it was added to the dictionary. Since a class is a reference type, when we retrieve the item from the dictionary, we will also have the changed data.
Since the PersistentDictionary writes the data to disk, it cannot really handle reference types this way. Serializing it, and writing it to disk is essentially the same as treating the object as a value type (an entire copy is made).
Because it's intended to be used instead of the standard dictionaries, and the fact that it cannot handle reference types with complete transparency, the developers instead opted to support only structs, because structs are value types already.
However, if you're aware of this limitation and promise to be careful not to fall into this trap, you can allow it to serialize classes quite easily. Just download the source code and compile your own version of the EsentCollections library. The only change you need to make to it is to change this line:
if (!(type.IsValueType && type.IsSerializable))
to this:
if (!type.IsSerializable)
This will allow classes to be written to the PersistentDictionary as well, provided that it's Serializable, and its members are Serializable as well. A huge benefit is that it will also allow you to store arrays in there this way. All you have to keep in mind is that it's not a real dictionary, therefore when you write an object to it, it will store a copy of the object. Therefore, updating any of your object's members after adding them to the PersistentDictionary will not update the copy in the dictionary automatically as well, you'd need to remember to update it manually.
PersistentDictionary can only store value-structs and a very limited subset of classes (string, Uri, IPAddress). Take a look at ColumnConverter.cs, at private static bool IsSerializable(Type type) for the full restrictions. You'd be hitting the typeinfo.IsValueType() restriction.
By the way, you can also try posting questions about PersistentDictionary at http://managedesent.codeplex.com/discussions .
-martin

should it be allowed to change the method signature in a non statically typed language

Hypothetic and academic question.
pseudo-code:
<pre><code>
class Book{
read(theReader)
}
class BookWithMemory extends Book {
read(theReader, aTimestamp = null)
}
</pre></code>
Assuming:
an interface (if supported) would prohibit it
default value for parameters are supported
Notes:
PHP triggers an strict standards error for this.
I'm not surprised that PHP strict mode complains about such an override. It's very easy for a similar situation to arise unintentionally in which part of a class hierarchy was edited to use a new signature and a one or a few classes have fallen out of sync.
To avoid the ambiguity, name the new method something different (for this example, maybe readAt?), and override read to call readAt in the new class. This makes the intent plain to the interpreter as well as anyone reading the code.
The actual behavior in such a case is language-dependent -- more specifically, it depends on how much of the signature makes up the method selector, and how parameters are passed.
If the name alone is the selector (as in PHP or Perl), then it's down to how the language handles mismatched method parameter lists. If default arguments are processed at the call site based on the static type of the receiver instead of at the callee's entry point, when called through a base class reference you'd end up with an undefined argument value instead of your specified default, similarly to what would happen if there was no default specified.
If the number of parameters (with or without their types) are part of the method selector (as in Erlang or E), as is common in dynamic languages that run on JVM or CLR, you have two different methods. Create a new overload taking additional arguments, and override the base method with one that calls the new overload with default argument values.
If I am reading the question correctly, this question seems very language specific (as in it is not applicable to all dynamic languages), as I know you can do this in ruby.
class Book
def read(book)
puts book
end
end
class BookWithMemory < Book
def read(book,aTimeStamp = nil)
super book
puts aTimeStamp
end
end
I am not sure about dynamic languages besides ruby. This seems like a pretty subjective question as well, as at least two languages were designed on either side of the issue (method overloading vs not: ruby vs php).

Difference between association and dependency?

In a UML class diagram, what is the difference between an association relationship and a dependency relationship?
From what I know, an association is a stronger relationship than a dependency, but I'm not sure how it is stronger.
Any example would be more than welcome :)
An association almost always implies that one object has the other object as a field/property/attribute (terminology differs).
A dependency typically (but not always) implies that an object accepts another object as a method parameter, instantiates, or uses another object. A dependency is very much implied by an association.
In OOP terms:
Association --> A has-a C object (as a member variable)
Dependency --> A references B (as a method parameter or return type)
public class A {
private C c;
public void myMethod(B b) {
b.callMethod();
}
}
There is also a more detailed answer.
What is the difference between dependency and association?:
In general, you use an association to represent something like a field
in a class. The link is always there, in that you can always ask an
order for its customer. It need not actually be a field, if you are
modeling from a more interface perspective, it can just indicate the
presence of a method that will return the order's customer.
To quote from the 3rd edition of UML Distilled (now just out) "a
dependency exists between two elements if changes to the definition of
one element (the supplier) may cause changes to the other (the
client)". This is a very vague and general relationship, which is why
the UML has a host of stereotypes for different forms of dependency.
In code terms, such things as naming a parameter type and creating an
object in a temporary variable imply a dependency.
...
Dependency is like when you define a method that takes a String(in Java, C#, as string is a object in them) as a parameter, then your class is dependent on String class.
Association is like when you declare a string as an attribute in your class.
then your code is associated with the string class.
String name = null //: is a association.
Dependency - A change in a class affects the change in it's dependent class. Example- Circle is dependent on Shape (an interface). If you change Shape , it affects Circle too. So, Circle has a dependency on Shape.
Association- means there is a certain relationship between 2 objects
(one-one, one-many,many-many)
Association is of 2 types-
Composition
Aggregation
1) Composition- stronger Association or relationship between 2 objects. You are creating an object of a class B inside another class A
public class A {
B b;
public void setB(){
this.b= new B();
}
}
If we delete class A , B won't exist( B object is created inside A only).
Another example -Body & Liver .Liver can't exist outside Body.
2) Aggregation - weaker type of Association between 2 objects.
public class A {
B b;
public void setB(B b_ref){
this.b= b_ref;
/* object B is passed as an argument of a method */
}
}
Even if you delete class A, B will exist outside(B is created outside and passed to Class A)
Another example of this- Man & Car . Man has a Car but Man & Car exist independently.
Here: "Association vs. Dependency vs. Aggregation vs. Composition", you have a great vade mecum with uml class diagrams and code snippets.
The author gives us a list of relationships: Association, Dependency, Aggregation, Composition in one place.
A dependency is very general and lowering complexity is about diminishing dependencies as much as possible.
An association is a strong (static) dependency. Aggregation and Composition are even stronger.
I was always checking this answer as it didn't stick in my mind. I found this one more helpful after reading the accepted answer
Association is when one object just has a link to another and don't use relational object methods. For ruby for example
class User
has_one :profile
end
user = User.first
profile = user.profile
profile.sign_out
It means you can get a profile object from user but user don't use profile's methods inside himself(has no dependency on a Profile's interface).
Dependency means that User has link to another object and call that object's methods inside himself
class User
has_one :profile
def personal_info
profile.info
end
end
Here if Profile's info method will be changed or renamed our Dependent User class also need to be changed.

Resources