I have a problem with equality and adding objects to dictionary
class DoublePoint
{
public double X;
public double Y;
public double Z;
public DoublePoint(double x, double y, double z)
{
this.X = x; this.Y = y; this.Z = z;
}
public override bool Equals(object obj)
{
try
{
DoublePoint dPoint = obj as DoublePoint;
return this.X.IsEqualTo(dPoint.X) && this.Y.IsEqualTo(dPoint.Y) && this.Z.IsEqualTo(dPoint.Z);
}
catch
{
throw;
}
}
public override int GetHashCode()
{
return this.X.GetCode() ^ this.Y.GetCode() ^ this.Z.GetCode();
}
}
static class extensions
{
static double Tolerance = 0.001;
public static bool IsEqualTo(this double d1, double d2)
{
return (d1 - d2) <= Tolerance;
}
public static int GetCode(this double d1)
{
byte[] data = BitConverter.GetBytes(d1);
int x = BitConverter.ToInt32(data, 0);
int y = BitConverter.ToInt32(data, 4);
return x ^ y;
}
}
and here is my test:
DoublePoint d1 = new DoublePoint(1.200, 2.3, 3.4);
DoublePoint d2 = new DoublePoint(1.2001, 2.3, 3.4);
DoublePoint d3 = new DoublePoint(1.200, 2.3, 3.4);
bool isEqual = d1.Equals(d2); // true here
Dictionary<DoublePoint, int> dict = new Dictionary<DoublePoint, int>();
dict.Add(d1, 1);
dict.Add(d2, 2); // successful, d2 is also added but d2 is equal to d1
dict.Add(d3, 3); // Error! since we have d1 already in dictionary
With this,
when I add doublpoint objects which are same(with some tolerance), I am able to add them in dictionary. How to restrict such objects.
Is the right way to compare double data types with some tolerance.
Please advice.
Thank you
There is a problem with defining "equal" as "close enough". It is no doubt useful for computations, but such "equal" violates the transitivity rule: for Equals if a.Equals(b) && b.Equals(c), then a.Equals(c) must hold true (which is obviously not the property of your code).
So, IsEqualTo is unfortunately not suitable for redefining Equals.
What are the possible ways to solve the problem? Equals has to split into the disjoint groups of "equivalent" values. I usually do the following: define a rule to get the "canonical" value from a group, so two values are "equal" iff their canonical group representatives are equal.
Simple example: for just a double value d let's define the canonical value to be Math.Floor(d). So this way you have 1.0 equals 1.1, 0.9 equals to 0.0 but doesn't equal to 1.0. This way is not the ideal one (after all, 0.9 being not equal to 1.0 but equal to 0.0 seems to be wrong), but at least the transitivity rule is held.
Specifically for your case it could be this way:
class DoublePoint
{
public double X;
public double Y;
public double Z;
const double epsilon;
void GetCanonicalValues(out double x, out double y, out double z)
{
x = Math.Floor(X / epsilon) * epsilon;
y = Math.Floor(Y / epsilon) * epsilon;
z = Math.Floor(Z / epsilon) * epsilon;
}
public override bool Equals(object obj)
{
DoublePoint that = obj as DoublePoint;
if (that == null)
return false;
double x1, y1, z1, x2, y2, z2;
this.GetCanonicalValues(out x1, out x2, out z2);
that.GetCanonicalValues(out x1, out x2, out z2);
return (x1 == x2) && (y1 == y2) && (z1 == z2); // here we can compare
}
...
Another problem with your code is that your GetHashCode is not aligned with Equals: if a.Equals(b) then a.GetHashCode() must equal b.GetHashCode().
You can solve this as well by using the canonical values:
public override int GetHashCode()
{
double x, y, z;
GetCanonicalValues(out x, out y, out z);
return x.GetHashCode() ^ y.GetHashCode() ^ z.GetCode();
}
}
Beware that the behaviour of Equals may be unacceptable for your needs -- then you'll need to ensure the transitivity some other way.
Related
I am looking for a deterministic threadsafe Rcpp algorithm for 2-D numerical integration. RcppNumerical provides a partial interface to Cuba for multidimensional integration, but from my trials that appears not to be threadsafe in RcppParallel, and it probably uses a Monte Carlo method. That throws me back on repeated 1-dimensional integration. I have used this successfully with the (not threadsafe) R function Rdqags, but my (possibly naive) coding for RcppNumerical fails to compile because the nested class is abstract. Perhaps due to the operator() virtual function.
Can anyone suggest a way around this in RcppNumerical, or some alternative?
My test code emulating the 2-D example from https://github.com/yixuan/RcppNumerical is below. It gives errors like
cannot declare variable 'f2' to be of abstract type 'Normal2'
cannot declare variable 'f1' to be of abstract type 'Normal1'
Murray
// [[Rcpp::depends(RcppEigen)]]
// [[Rcpp::depends(RcppNumerical)]]
#include <RcppNumerical.h>
using namespace Numer;
// P(a1 < X1 < b1, a2 < X2 < b2), (X1, X2) ~ N([0], [1 rho])
// ([0], [rho 1])
class Normal2: public Func
{
private:
const double rho;
const double x;
double const1; // 2 * (1 - rho^2)
double const2; // 1 / (2 * PI) / sqrt(1 - rho^2)
public:
Normal2(const double& rho_, const double& x_) : rho(rho_), x(x_)
{
const1 = 2.0 * (1.0 - rho * rho);
const2 = 1.0 / (2 * M_PI) / std::sqrt(1.0 - rho * rho);
}
// PDF of bivariate normal
double operator()(const double& y)
{
double z = x * x - 2 * rho * x * y + y * y;
return const2 * std::exp(-z / const1);
}
};
class Normal1: public Func
{
private:
const double rho;
double a2, b2;
public:
Normal1(const double& rho_, const double& a2_, const double& b2_) : rho(rho_), a2(a2_), b2(b2_) {}
// integral in y dimension for given x
double operator()(const double& x)
{
Normal2 f2(rho, x);
double err_est;
int err_code;
const double res = integrate(f2, a2, b2, err_est, err_code);
return res;
}
};
// [[Rcpp::export]]
Rcpp::List integrate_test3()
{
double a1 = -1.0;
double b1 = 1.0;
double a2 = -1.0;
double b2 = 1.0;
Normal1 f1(0.5, a2, b2); // rho = 0.5
double err_est;
int err_code;
const double res = integrate(f1, a1, b1, err_est, err_code);
return Rcpp::List::create(
Rcpp::Named("approximate") = res,
Rcpp::Named("error_estimate") = err_est,
Rcpp::Named("error_code") = err_code
);
}
The Numer::Func class is an abstract class because of one undefined method:
virtual double operator()(const double& x) const = 0;
Now you are providing an implementation for
double operator()(const double& x)
which leaves the above method undefined and hence the class abstract. You should change this to
double operator()(const double& x) const
for both Normal1 and Normal2 to have your code compile.
BTW, my compiler (gcc 9.2) is even quite explicit about this problem:
59094915.cpp: In member function ‘double Normal1::operator()(const double&)’:
59094915.cpp:43:17: error: cannot declare variable ‘f2’ to be of abstract type ‘Normal2’
43 | Normal2 f2(rho, x);
| ^~
59094915.cpp:9:7: note: because the following virtual functions are pure within ‘Normal2’:
9 | class Normal2: public Func
| ^~~~~~~
In file included from /usr/local/lib/R/site-library/RcppNumerical/include/integration/wrapper.h:13,
from /usr/local/lib/R/site-library/RcppNumerical/include/RcppNumerical.h:16,
from 59094915.cpp:3:
/usr/local/lib/R/site-library/RcppNumerical/include/integration/../Func.h:26:20: note: ‘virtual double Numer::Func::operator()(const double&) const’
26 | virtual double operator()(const double& x) const = 0;
| ^~~~~~~~
59094915.cpp: In function ‘Rcpp::List integrate_test3()’:
59094915.cpp:58:13: error: cannot declare variable ‘f1’ to be of abstract type ‘Normal1’
58 | Normal1 f1(0.5, a2, b2); // rho = 0.5
| ^~
59094915.cpp:32:7: note: because the following virtual functions are pure within ‘Normal1’:
32 | class Normal1: public Func
| ^~~~~~~
In file included from /usr/local/lib/R/site-library/RcppNumerical/include/integration/wrapper.h:13,
from /usr/local/lib/R/site-library/RcppNumerical/include/RcppNumerical.h:16,
from 59094915.cpp:3:
/usr/local/lib/R/site-library/RcppNumerical/include/integration/../Func.h:26:20: note: ‘virtual double Numer::Func::operator()(const double&) const’
26 | virtual double operator()(const double& x) const = 0;
| ^~~~~~~~
I want to make my dot program turn around when they reach edge
so basically i just simply calculate
x = width/2+cos(a)*20;
y = height/2+sin(a)*20;
it's make circular movement. so i want to make this turn around by checking the edge. i also already make sure that y reach the if condition using println command
class particles {
float x, y, a, r, cosx, siny;
particles() {
x = width/2; y = height/2; a = 0; r = 20;
}
void display() {
ellipse(x, y, 20, 20);
}
void explode() {
a = a + 0.1;
cosx = cos(a)*r;
siny = sin(a)*r;
x = x + cosx;
y = y + siny;
}
void edge() {
if (x>width||x<0) cosx*=-1;
if (y>height||y<0) siny*=-1;
}
}
//setup() and draw() function
particles part;
void setup(){
size (600,400);
part = new particles();
}
void draw(){
background(40);
part.display();
part.explode();
part.edge();
}
they just ignore the if condition
There is no problem with your check, the problem is with the fact that presumably the very next time through draw() you ignore what you did in response to the check by resetting the values of cosx and siny.
I recommend creating two new variables, dx and dy ("d" for "direction") which will always be either +1 and -1 and change these variables in response to your edge check. Here is a minimal example:
float a,x,y,cosx,siny;
float dx,dy;
void setup(){
size(400,400);
background(0);
stroke(255);
noFill();
x = width/2;
y = height/2;
dx = 1;
dy = 1;
a = 0;
}
void draw(){
ellipse(x,y,10,10);
cosx = dx*20*cos(a);
siny = dy*20*sin(a);
a += 0.1;
x += cosx;
y += siny;
if (x > width || x < 0)
dx = -1*dx;
if (y > height || y < 0)
dy = -1*dy;
}
When you run this code you will observe the circles bouncing off the edges:
I am trying to convert an SVG arc to a series of line segments. The background is, that I want to draw an arc using (reportlab)[http://www.reportlab.com/].
The svg gives me these parameters (accoring to here).
rx,ry,x-axis-rotation,large-arc-flag,sweep-flag,dx,dy
Now I need to determine lines following this arcs. But I do not understand how I can convert this to something geometrical more usable.
How would I determine the center of the ellipse arc and its rotation?
SVG elliptic arcs are really tricky and took me a while to implement it (even following the SVG specs). I ended up with something like this in C++:
//---------------------------------------------------------------------------
class svg_usek // virtual class for svg_line types
{
public:
int pat; // svg::pat[] index
virtual void reset(){};
virtual double getl (double mx,double my){ return 1.0; };
virtual double getdt(double dl,double mx,double my){ return 0.1; };
virtual void getpnt(double &x,double &y,double t){};
virtual void compute(){};
virtual void getcfg(AnsiString &nam,AnsiString &dtp,AnsiString &val){};
virtual void setcfg(AnsiString &nam,AnsiString &dtp,AnsiString &val,int &an,int &ad,int &av){};
};
//---------------------------------------------------------------------------
class svg_ela:public svg_usek // sweep = 0 arc goes from line p0->p1 CW
{ // sweep = 1 arc goes from line p0->p1 CCW
public: // larc is unused if |da|=PI
double x0,y0,x1,y1,a,b,alfa; int sweep,larc;
double sx,sy,a0,a1,da,ang; // sx,sy rotated center by ang
double cx,cy; // real center
void reset() { x0=0; y0=0; x1=0; y1=0; a=0; b=0; alfa=0; sweep=false; larc=false; compute(); }
double getl (double mx,double my);
// double getdt(double dl,double mx,double my);
double getdt(double dl,double mx,double my) { int n; double dt; dt=divide(dl,getl(mx,my)); n=floor(divide(1.0,dt)); if (n<1) n=1; return divide(1.0,n); }
void getpnt(double &x,double &y,double t);
void compute();
void getcfg(AnsiString &nam,AnsiString &dtp,AnsiString &val);
void setcfg(AnsiString &nam,AnsiString &dtp,AnsiString &val,int &an,int &ad,int &av);
svg_ela() {}
svg_ela(svg_ela& a) { *this=a; }
~svg_ela() {}
svg_ela* operator = (const svg_ela *a) { *this=*a; return this; }
//svg_ela* operator = (const svg_ela &a) { ...copy... return this; }
};
//---------------------------------------------------------------------------
void svg_ela::getpnt(double &x,double &y,double t)
{
double c,s,xx,yy;
t=a0+(da*t);
xx=sx+a*cos(t);
yy=sy+b*sin(t);
c=cos(-ang);
s=sin(-ang);
x=xx*c-yy*s;
y=xx*s+yy*c;
}
//---------------------------------------------------------------------------
void svg_ela::compute()
{
double ax,ay,bx,by; // body
double vx,vy,l,db;
int _sweep;
double c,s,e;
ang=pi-alfa;
_sweep=sweep;
if (larc) _sweep=!_sweep;
e=divide(a,b);
c=cos(ang);
s=sin(ang);
ax=x0*c-y0*s;
ay=x0*s+y0*c;
bx=x1*c-y1*s;
by=x1*s+y1*c;
ay*=e; // transform to circle
by*=e;
sx=0.5*(ax+bx); // mid point between A,B
sy=0.5*(ay+by);
vx=(ay-by);
vy=(bx-ax);
l=divide(a*a,(vx*vx)+(vy*vy))-0.25;
if (l<0) l=0;
l=sqrt(l);
vx*=l;
vy*=l;
if (_sweep)
{
sx+=vx;
sy+=vy;
}
else{
sx-=vx;
sy-=vy;
}
a0=atanxy(ax-sx,ay-sy);
a1=atanxy(bx-sx,by-sy);
// ay=divide(ay,e);
// by=divide(by,e);
sy=divide(sy,e);
da=a1-a0;
if (fabs(fabs(da)-pi)<=_acc_zero_ang) // half arc is without larc and sweep is not working instead change a0,a1
{
db=(0.5*(a0+a1))-atanxy(bx-ax,by-ay);
while (db<-pi) db+=pi2; // db<0 CCW ... sweep=1
while (db>+pi) db-=pi2; // db>0 CW ... sweep=0
_sweep=0;
if ((db<0.0)&&(!sweep)) _sweep=1;
if ((db>0.0)&&( sweep)) _sweep=1;
if (_sweep)
{
// a=0; b=0;
if (da>=0.0) a1-=pi2;
if (da< 0.0) a0-=pi2;
}
}
else if (larc) // big arc
{
if ((da< pi)&&(da>=0.0)) a1-=pi2;
if ((da>-pi)&&(da< 0.0)) a0-=pi2;
}
else{ // small arc
if (da>+pi) a1-=pi2;
if (da<-pi) a0-=pi2;
}
da=a1-a0;
// realny stred
c=cos(+ang);
s=sin(+ang);
cx=sx*c-sy*s;
cy=sx*s+sy*c;
}
//---------------------------------------------------------------------------
The atanxy(x,y) is the same as atan2(y,x). You can ignore class svg_usek. Usage of svg_ela is simple first feed the SVG parameters to it:
x0,y0 is start point (from previous <path> element)
x1,y1 is endpoint (x0+dx,y0+dy)
a,b are as yours rx,ry
alfa rotation angle [rad] so you need to convert from degrees...
sweep,larc are as yours.
And then call svg_ela::compute(); that will compute all variables needed for interpolation. When this initialization is done then to obtain any point from the arc just call svg_ela::getpnt(x,y,t); where x,y is the returned coordinate and t=<0,1> is input parameter. All the other methods are not important for you. To render your ARC just do this:
svg_ela arc; // your initialized arc here
int e; double x,y,t;
arc.getpnt(x,y,0.0);
Canvas->MoveTo(x,y);
for (e=1,t=0.0;e;t+=0.02)
{
if (t>=1.0) { t=1.0; e=0; }
arc.getpnt(x,y,t);
Canvas->LineTo(x,y);
}
Do not forget that SVG <g> and <path> can have transform matrices so you should apply them after each svg_ela::getpnt(x,y,t) call.
If you are interested how the stuff works compute() simply:
rotates the space so the ellipse semi-axises are axis aligned.
scale the space so ellipse becomes circle.
compute center point for circle
center lies on line that is perpendicular to line (x0,y0),(x1,y1) and also lies on its midpoint. The distance is computed by Pytagoras and direction from sweep and larc combination.
scale back to ellipse
rotate back
Now we have real center position so also compute the real endpoint angles relative to it. Now for each point on ellipse it is enough to compute it by standard parametric equation of ellipse and rotate to desired position which is what getpnt(x,y,t) does.
Hope it helps a bit.
Here related QA:
Express SVG arc as series of curves
with some images explaining the math behind SVG arcs (using the same variable names as here)
For my Java SVG application I needed a conversion of path arc to lines. I used the above code and converted it into a Java class and performed some cleanup.
package de.berndbock.tinysvg.helper;
/**
* Breaks down SVG arcs into line segments.
*
* #author Bernd Bock <chef#bernd-bock.de>
*/
public class ArcSegmenter {
private static final double PI2 = Math.PI * 2;
private static final double ACC_ZERO_ANG = 0.000001 * Math.PI / 180.0;
private final double x0;
private final double y0;
private final double x1;
private final double y1;
private final double a;
private final double b;
private final double alfa;
private final boolean sweep;
private final boolean larc;
private double sx, sy, a0, a1, da, ang; // sx, sy rotated center by ang
// private double cx, cy; // real center
public ArcSegmenter(double x0, double y0, double x1, double y1 , double a, double b, double alfa, int sweep, int larc) {
this.x0 = x0;
this.y0 = y0;
this.x1 = x1;
this.y1 = y1;
this.a = a;
this.b = b;
this.alfa = alfa;
this.sweep = sweep != 0;
this.larc = larc != 0;
compute();
}
private void compute() {
double ax, ay, bx, by; // body
double vx, vy, l, db;
boolean _sweep;
double c, s, e;
ang = Math.PI - alfa;
_sweep = sweep;
if (larc) {
_sweep = !_sweep;
}
e = a / b;
c = Math.cos(ang);
s = Math.sin(ang);
ax = x0 * c - y0 * s;
ay = x0 * s + y0 * c;
bx = x1 * c - y1 * s;
by = x1 * s + y1 * c;
ay *= e; // transform to circle
by *= e;
sx = 0.5 * (ax + bx); // mid point between A,B
sy = 0.5 * (ay + by);
vx = (ay - by);
vy = (bx - ax);
l = a * a / (vx * vx + vy * vy) - 0.25;
if (l < 0) {
l = 0;
}
l = Math.sqrt(l);
vx *= l;
vy *= l;
if (_sweep) {
sx += vx;
sy += vy;
}
else {
sx -= vx;
sy -= vy;
}
a0 = Math.atan2(ay - sy, ax - sx);
a1 = Math.atan2(by - sy, bx - sx);
sy = sy / e;
da = a1 - a0;
if (Math.abs(Math.abs(da) - Math.PI) <= ACC_ZERO_ANG) { // half arc is without larc and sweep is not working instead change a0,a1
db = (0.5 * (a0 + a1)) - Math.atan2(by - ay, bx - ax);
while (db < -Math.PI) {
db += PI2; // db<0 CCW ... sweep=1
}
while (db > Math.PI) {
db -= PI2; // db>0 CW ... sweep=0
}
_sweep = false;
if ((db < 0.0) && (!sweep)) {
_sweep = true;
}
if ((db > 0.0) && ( sweep)) {
_sweep = true;
}
if (_sweep) {
if (da >= 0.0) {
a1 -= PI2;
}
if (da < 0.0) {
a0 -= PI2;
}
}
}
else if (larc) { // big arc
if ((da < Math.PI) && (da >= 0.0)) {
a1 -= PI2;
}
if ((da > -Math.PI) && (da < 0.0)) {
a0 -= PI2;
}
}
else { // small arc
if (da > Math.PI) {
a1 -= PI2;
}
if (da < -Math.PI) {
a0 -= PI2;
}
}
da = a1 - a0;
// center point calculation:
// c = Math.cos(ang);
// s = Math.sin(ang);
// cx = sx * c - sy * s;
// cy = sx * s + sy * c;
}
public Point getpnt(double t) {
Point result = new Point();
double c, s, x, y;
t = a0 + da * t;
x = sx + a * Math.cos(t);
y = sy + b * Math.sin(t);
c = Math.cos(-ang);
s = Math.sin(-ang);
result.x = x * c - y * s;
result.y = x * s + y * c;
return result;
}
// public Point getCenterPoint() {
// return new Point(cx, cy);
// }
}
If you need the center point, then uncomment the respective lines.
Sample code to give you an idea of the usage:
ArcSegmenter segmenter = new ArcSegmenter(currentPoint.x, currentPoint.y, endPoint.x, endPoint.y, rx, ry, phi, sf, lf);
Point p1, p2;
p1 = segmenter.getpnt(0.0);
Line line;
for (double t = increment; t < 1.000001f; t += increment) {
p2 = segmenter.getpnt(t);
line = new Line(null, parent, p1.x, p1.y, p2.x, p2.y);
elements.add(line);
p1 = p2;
}
I have made an implementation of the Reaction-Diffusion algorithm on Processing 3.1.1, following a video tutorial. I have made some adaptations on my code, like implementing it on a torus space, instead of a bounded box, like the video.
However, I ran into this annoying issue, that the code runs really slow, proportional to the canvas size (larger, slower). With that, I tried optmizing the code, according to my (limited) knowledge. The main thing I did was to reduce the number of loops running.
Even then, my code still ran quite slow.
Since I have noticed that with a canvas of 50 x 50 in size, the algorithm ran at a good speed, I tried making it multithreaded, in such a way that the canvas would be divided between the threads, and each thread would run the algorithm for a small region of the canvas.
All threads read from the current state of the canvas, and all write to the future state of the canvas. The canvas is then updated using Processing's pixel array.
However, even with multithreading, I didn't see any performance improvement. By the contrary, I saw it getting worse. Now sometimes the canvas flicker between a rendered state and completely white, and in some cases, it doesn't even render.
I'm quite sure that I'm doing something wrong, or I may be taking the wrong approach to optimizing this algorithm. And now, I'm asking for help to understand what I'm doing wrong, and how I could fix or improve my code.
Edit: Implementing ahead of time calculation and rendering using a buffer of PImage objects has removed flickering, but the calculation step on the background doesn't run fast enough to fill the buffer.
My Processing Sketch is below, and thanks in advance.
ArrayList<PImage> buffer = new ArrayList<PImage>();
Thread t;
Buffer b;
PImage currentImage;
Point[][] grid; //current state
Point[][] next; //future state
//Reaction-Diffusion algorithm parameters
final float dA = 1.0;
final float dB = 0.5;
//default: f = 0.055; k = 0.062
//mitosis: f = 0.0367; k = 0.0649
float feed = 0.055;
float kill = 0.062;
float dt = 1.0;
//multi-threading parameters to divide canvas
int threadSizeX = 50;
int threadSizeY = 50;
//red shading colors
color red = color(255, 0, 0);
color white = color(255, 255, 255);
color black = color(0, 0, 0);
//if redShader is false, rendering will use a simple grayscale mode
boolean redShader = true;
//simple class to hold chemicals A and B amounts
class Point
{
float a;
float b;
Point(float a, float b)
{
this.a = a;
this.b = b;
}
}
void setup()
{
size(300, 300);
//initialize matrices with A = 1 and B = 0
grid = new Point[width][];
next = new Point[width][];
for (int x = 0; x < width; x++)
{
grid[x] = new Point[height];
next[x] = new Point[height];
for (int y = 0; y < height; y++)
{
grid[x][y] = new Point(1.0, 0.0);
next[x][y] = new Point(1.0, 0.0);
}
}
int a = (int) random(1, 20); //seed some areas with B = 1.0
for (int amount = 0; amount < a; amount++)
{
int siz = 2;
int x = (int)random(width);
int y = (int)random(height);
for (int i = x - siz/2; i < x + siz/2; i++)
{
for (int j = y - siz/2; j < y + siz/2; j++)
{
int i2 = i;
int j2 = j;
if (i < 0)
{
i2 = width + i;
} else if (i >= width)
{
i2 = i - width;
}
if (j < 0)
{
j2 = height + j;
} else if (j >= height)
{
j2 = j - height;
}
grid[i2][j2].b = 1.0;
}
}
}
initializeThreads();
}
/**
* Divide canvas between threads
*/
void initializeThreads()
{
ArrayList<Reaction> reactions = new ArrayList<Reaction>();
for (int x1 = 0; x1 < width; x1 += threadSizeX)
{
for (int y1 = 0; y1 < height; y1 += threadSizeY)
{
int x2 = x1 + threadSizeX;
int y2 = y1 + threadSizeY;
if (x2 > width - 1)
{
x2 = width - 1;
}
if (y2 > height - 1)
{
y2 = height - 1;
}
Reaction r = new Reaction(x1, y1, x2, y2);
reactions.add(r);
}
}
b = new Buffer(reactions);
t = new Thread(b);
t.start();
}
void draw()
{
if (buffer.size() == 0)
{
return;
}
PImage i = buffer.get(0);
image(i, 0, 0);
buffer.remove(i);
//println(frameRate);
println(buffer.size());
//saveFrame("output/######.png");
}
/**
* Faster than calling built in pow() function
*/
float pow5(float x)
{
return x * x * x * x * x;
}
class Buffer implements Runnable
{
ArrayList<Reaction> reactions;
boolean calculating = false;
public Buffer(ArrayList<Reaction> reactions)
{
this.reactions = reactions;
}
public void run()
{
while (true)
{
if (buffer.size() < 1000)
{
calculate();
if (isDone())
{
buffer.add(currentImage);
Point[][] temp;
temp = grid;
grid = next;
next = temp;
calculating = false;
}
}
}
}
boolean isDone()
{
for (Reaction r : reactions)
{
if (!r.isDone())
{
return false;
}
}
return true;
}
void calculate()
{
if (calculating)
{
return;
}
currentImage = new PImage(width, height);
for (Reaction r : reactions)
{
r.calculate();
}
calculating = true;
}
}
class Reaction
{
int x1;
int x2;
int y1;
int y2;
Thread t;
public Reaction(int x1, int y1, int x2, int y2)
{
this.x1 = x1;
this.x2 = x2;
this.y1 = y1;
this.y2 = y2;
}
public void calculate()
{
Calculator c = new Calculator(x1, y1, x2, y2);
t = new Thread(c);
t.start();
}
public boolean isDone()
{
if (t.getState() == Thread.State.TERMINATED)
{
return true;
} else
{
return false;
}
}
}
class Calculator implements Runnable
{
int x1;
int x2;
int y1;
int y2;
//weights for calculating the Laplacian for A and B
final float[][] laplacianWeights = {{0.05, 0.2, 0.05},
{0.2, -1, 0.2},
{0.05, 0.2, 0.05}};
/**
* x1, x2, y1, y2 delimit a rectangle. The object will only work within it
*/
public Calculator(int x1, int y1, int x2, int y2)
{
this.x1 = x1;
this.x2 = x2;
this.y1 = y1;
this.y2 = y2;
//println("x1: " + x1 + ", y1: " + y1 + ", x2: " + x2 + ", y2: " + y2);
}
#Override
public void run()
{
reaction();
show();
}
public void reaction()
{
for (int x = x1; x <= x2; x++)
{
for (int y = y1; y <= y2; y++)
{
float a = grid[x][y].a;
float b = grid[x][y].b;
float[] l = laplaceAB(x, y);
float a2 = reactionDiffusionA(a, b, l[0]);
float b2 = reactionDiffusionB(a, b, l[1]);
next[x][y].a = a2;
next[x][y].b = b2;
}
}
}
float reactionDiffusionA(float a, float b, float lA)
{
return a + ((dA * lA) - (a * b * b) + (feed * (1 - a))) * dt;
}
float reactionDiffusionB(float a, float b, float lB)
{
return b + ((dB * lB) + (a * b * b) - ((kill + feed) * b)) * dt;
}
/**
* Calculates Laplacian for both A and B at same time, to reduce amount of loops executed
*/
float[] laplaceAB(int x, int y)
{
float[] l = {0.0, 0.0};
for (int i = x - 1; i < x + 2; i++)
{
for (int j = y - 1; j < y + 2; j++)
{
int i2 = i;
int j2 = j;
if (i < 0)
{
i2 = width + i;
} else if (i >= width)
{
i2 = i - width;
}
if (j < 0)
{
j2 = height + j;
} else if (j >= height)
{
j2 = j - height;
}
int weightX = (i - x) + 1;
int weightY = (j - y) + 1;
l[0] += laplacianWeights[weightX][weightY] * grid[i2][j2].a;
l[1] += laplacianWeights[weightX][weightY] * grid[i2][j2].b;
}
}
return l;
}
public void show()
{
currentImage.loadPixels();
//renders the canvas using the pixel array
for (int x = 0; x < width; x++)
{
for (int y = 0; y < height; y++)
{
float a = next[x][y].a;
float b = next[x][y].b;
int pix = x + y * width;
float diff = (a - b);
color c;
if (redShader) //aply red shading
{
float thresh = 0.5;
if (diff < thresh)
{
float diff2 = map(pow5(diff), 0, pow5(thresh), 0, 1);
c = lerpColor(black, red, diff2);
} else
{
float diff2 = map(1 - pow5(-diff + 1), 1 - pow5(-thresh + 1), 1, 0, 1);
c = lerpColor(red, white, diff2);
}
} else //apply gray scale shading
{
c = color(diff * 255, diff * 255, diff * 255);
}
currentImage.pixels[pix] = c;
}
}
currentImage.updatePixels();
}
}
A programmer had a problem. He thought “I know, I’ll solve it with threads!”. has Now problems. two he
Processing uses a single rendering thread.
It does this for good reason, and most other renderers do the same thing. In fact, I don't know of any multi-threaded renderers.
You should only change what's on the screen from Processing's main rendering thread. In other words, you should only change stuff from Processing's functions, not your own thread. This is what's causing the flickering you're seeing. You're changing stuff as it's being drawn to the screen, which is a horrible idea. (And it's why Processing uses a single rendering thread in the first place.)
You could try to use your multiple threads to do the processing, not the rendering. But I highly doubt that's going to be worth it, and like you saw, it might even make things worse.
If you want to speed up your sketch, you might also consider doing the processing ahead of time instead of in real time. Do all your calculations at the beginning of the sketch, and then just reference the results of the calculations when it's time to draw the frame. Or you could draw to a PImage ahead of time, and then just draw those.
I have an array (object[,,]), let us assume for arguments sake the array is x1000, y1000,z*1000 and represents a matrix of points on an x,y,z plane.
at position: x50,y10,z199, for example I want to extract another object[,,] containing a smaller cube, say a submatrix of 100 cubed(or whatever is available, nulls if empty?) from the parent array using the reference point as a centerpoint, is this possible, I was hoping I could do it in linq but got hopelessly lost.. how would you/ should I tackle this.. one though was to do the following:
1.Create a new 3d array with the size of the amount of items i want to retrieve (xyz).
2.Iterate over each axis (x, y, z).
3.Copy the value from the source array to the target array (offsetX+x, offsetY+y, offsetZ+z).
4.Return new array.
but if this is being called a lot, I see it being quite a bottleneck, ideas anyone?
Depending on your usage of the smaller array, this may or may not suit your needs.
To represent a sub section (chunk) of array, instead of creating a new array or doing any copying, you could write your own class which serves as a view to that chunk of array.
Note that this example has the following properties:
No guard clauses in constructor
Chunk is always cube (x, y, z length are equal)
Chunk length is always odd (since we are expanding out from point of reference)
public class ArrayChunk<T>
{
// Array this chunk is from.
private readonly T[,,] _parentArray;
// Point of reference.
private readonly int _x, _y, _z;
// How many elements to move outwards in each direction from point of reference.
private readonly int _numToExpand;
public ArrayChunk(T[,,] parentArray, int x, int y, int z, int numToExpand)
{
_parentArray = parentArray;
_x = x;
_y = y;
_z = z;
_numToExpand = numToExpand;
}
public int Length => _numToExpand*2 + 1;
public T this[int x, int y, int z]
{
get
{
// Make sure index is within chunk range.
EnsureInChunkRange(x, y, z);
// Map chunk index to parent array index.
int parentX = MapToParent(_x, x),
parentY = MapToParent(_y, y),
parentZ = MapToParent(_z, z);
// If parent array index is in parent array range, return element from parent array.
if (IsInRangeOfParent(parentX, parentY, parentZ))
return _parentArray[parentX, parentY, parentZ];
// Otherwise return default element for type T.
return default(T);
}
set
{
EnsureInChunkRange(x, y, z);
int parentX = MapToParent(_x, x),
parentY = MapToParent(_y, y),
parentZ = MapToParent(_z, z);
if (IsInRangeOfParent(parentX, parentY, parentZ))
_parentArray[parentX, parentY, parentZ] = value;
else
throw new InvalidOperationException();
}
}
private void EnsureInChunkRange(int x, int y, int z)
{
if (x < 0 || y < 0 || z < 0 ||
x >= Length || y >= Length || z >= Length)
{
throw new IndexOutOfRangeException();
}
}
private int MapToParent(int referenceIndex, int index)
{
return referenceIndex - _numToExpand + index;
}
private bool IsInRangeOfParent(int parentX, int parentY, int parentZ)
{
return
parentX >= 0 &&
parentY >= 0 &&
parentZ >= 0 &&
parentX < _parentArray.GetLength(0) &&
parentY < _parentArray.GetLength(1) &&
parentZ < _parentArray.GetLength(2);
}
}
To easily get chunk from array, you could declare an extension method:
public static class ArrayChunkExtensions
{
public static ArrayChunk<T> GetChunk<T>(this T[,,] array, int x, int y, int z, int numToExpand)
{
return new ArrayChunk<T>(array, x, y, z, numToExpand);
}
}
Here's a sample usage:
Action<int, Action<int, int, int>> iterate = (length, action) =>
{
for (int x = 0; x < length; x++)
for (int y = 0; y < length; y++)
for (int z = 0; z < length; z++)
action(x, y, z);
};
// Create 5x5x5 parent array.
const int size = 5;
var array = new string[size, size, size];
iterate(size, (x, y, z) => array[x, y, z] = $"x:{x} y:{y} z:{z}");
// Take 3x3x3 chunk from parent array center.
const int indexOfReference = 2;
const int numToExpand = 1;
ArrayChunk<string> chunk = array.GetChunk(indexOfReference, indexOfReference, indexOfReference, numToExpand);
iterate(chunk.Length, (x, y, z) => Console.WriteLine(chunk[x, y, z]));