Configure and Build OpenCV to Custom FFMPEG Install - linux

I cannot seem to configure OpenCV to link to a non-/usr/lib set of FFMPEG libraries.
My LD_LIBRARY_PATH contains a direct link to the folder for the custom install of FFMPEG:
LD_LIBRARY_PATH=/pathto/ffmpeg-0.10.2/lib
Additionally, I've configured pkgconfig as:
PKG_CONFIG_PATH=/samepathto/ffmpeg-0.10.2/lib/pkgconfig/
Within CMake however I cannot find any setting for path to FFMPEG - either in basic or custom. The only setting related to FFMPEG appears to be WITH_FFMPEG type setting (set to ON).
I can build OpenCV but it seems to link to the system libraries for libavcodec - this causes a conflict as the system libraries are version .52 and the version in my install of FFMPEG are .53. Linking an app on a machine without the same system libraries seems to NOT link to my custom install of OpenCV (specifically the libavcodec) because of this (I'm installing these libraries on a shared network folder).
I am not sure if my problem is with building and linking to the wrong version of FFMPEG or if it is something with my environment after building (and then linking to the wrong ffmpeg).
I am building on Linux, Redhat 6, OpenCV 2.3.1.

Something like
export LD_LIBRARY_PATH=/ffmpeg_install_path/lib/
export PKG_CONFIG_PATH=$PKG_CONFIG_PATH:/ffmpeg_install_path/lib/pkgconfig
export PKG_CONFIG_LIBDIR=$PKG_CONFIG_LIBDIR:/ffmpeg_install_path/lib/
should work. At least it works for OpenCV 2.4.x on my Ubuntu.

For OpenCV 3.x and ffmpeg 3.x, I have to apply the following patch
diff --git a/cmake/OpenCVFindLibsVideo.cmake b/cmake/OpenCVFindLibsVideo.cmake
index 13b62ac..bab9df3 100644
--- a/cmake/OpenCVFindLibsVideo.cmake
+++ b/cmake/OpenCVFindLibsVideo.cmake
## -228,6 +228,12 ## if(WITH_FFMPEG)
if(FFMPEG_libavresample_FOUND)
ocv_append_build_options(FFMPEG FFMPEG_libavresample)
endif()
+ CHECK_MODULE(libavcodec HAVE_FFMPEG)
+ CHECK_MODULE(libavformat HAVE_FFMPEG)
+ CHECK_MODULE(libavutil HAVE_FFMPEG)
+ CHECK_MODULE(libswscale HAVE_FFMPEG)
+ CHECK_MODULE(libswresample HAVE_FFMPEG)
+ CHECK_MODULE(libavresample HAVE_FFMPEG)
if(HAVE_FFMPEG)
try_compile(__VALID_FFMPEG
"${OpenCV_BINARY_DIR}"
And with the following script to build
#!/bin/bash
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$HOME/Applications/ffmpeg/lib
export PKG_CONFIG_PATH=$PKG_CONFIG_PATH:$HOME/Applications/ffmpeg/lib/pkgconfig
export PKG_CONFIG_LIBDIR=$PKG_CONFIG_LIBDIR:$HOME/Applications/ffmpeg/lib
cmake \
-D BUILD_EXAMPLES=ON \
-D BUILD_TESTS=OFF \
-D OPENCV_EXTRA_EXE_LINKER_FLAGS="-Wl,-rpath,$HOME/Applications/ffmpeg/lib" \
-D CMAKE_BUILD_TYPE=RELEASE \
-D CMAKE_INSTALL_PREFIX=$HOME/Applications/opencv \
/path/to/opencv
Also, when build ffmpeg, I have to enable flags --enable-avresample.

It's years after the question was asked, but I recently ran into the kinds of issues described in this question! I'd like to add my input.
First: I only built the static ffmpeg libraries (for reasons), which the opencv build process is somewhat hostile towards. There have been posts by opencv developers stating that they don't support an opencv build against static ffmpeg libraries, but my thinking was "what if you're also building static opencv libraries? Certainly that should be supported?"
And the answer is yes, you can compile static opencv libraries against static ffmpeg libraries! I did this with opencv 4.1.1 against ffmpeg 4.2. I had to use the following cmake options:
cmake3 \
-D BUILD_opencv_apps=OFF \
-D BUILD_opencv_python2=OFF \
-D BUILD_SHARED_LIBS=OFF \
-D WITH_FFMPEG=ON \
-D OPENCV_FFMPEG_SKIP_BUILD_CHECK=ON \
These options result in a set of opencv static libraries that include whatever ffmpeg static libraries that you've also built, assuming your PKG_CONFIG_PATH is setup to correctly find those libraries (or if you've installed them to some default system location).
Q/A:
Why can't we build apps?
The opencv build process assumes that you are building and linking against shared libraries, even if you only build static libraries. This seems like a shortcoming in the build process rather than a technical limitation; perhaps some day this will be fixed.
What is the OPENCV_FFMPEG_SKIP_BUILD_CHECK flag?
There is a step in ffmpeg's cmake process where an application is built and linked using the same faulty build process as opencv's other applications. It's faulty in the sense that the process assumes that you're linking against shared libraries when it doesn't need to; you can perform the same build steps yourself while not making that assumption and create a working application. Thus, this build check needs to be turned off in order for opencv to accept that yes, in fact, any static libraries it finds are okay to use. This is
And why do you disable python support?
The opencv python build process explicitly produces a shared library loadable by Python.
Does this imply that you're still building the tests suite even with the static libraries?
Yes. But I haven't tried running them

In addition to Andrey's answer:
I found that (for my configuration) the opencv 4.1.1 build-system did not correctly add the ffmpeg library path (though it did set the include directory.) My workaround was to supply these paths with the following cmake build arguments:
-DCMAKE_SHARED_LINKER_FLAGS=" -Wl,-rpath-link $FFMPEG_LIBDIR -L$FFMPEG_LIBDIR"
-DCMAKE_MODULE_LINKER_FLAGS=" -Wl,-rpath-link $FFMPEG_LIBDIR -L$FFMPEG_LIBDIR"
-DCMAKE_EXE_LINKER_FLAGS=" -Wl,-rpath-link $FFMPEG_LIBDIR -L$FFMPEG_LIBDIR"
where $FFMPEG_LIBDIR is the path to your ffmpeg library binaries.
It was necessary to use the -rpath-link otpion, because the build system didn't supply all necessary ffmpeg library arguments for my ffmpeg installation.
Examining modules/videoio/cmake/detect_ffmpeg.cmake, it looks like FFMPEG can also be coerced to accept user supplied library paths by specifying:
-DHAVE_FFMPEG=ON
-DFFMPEG_INCLUDE_DIRS=(path to your ffmpeg include directories)
-DFFMPEG_LIBRARIES=(list of ffmpeg libraries, e.g. -lavcodec)
But if we perform this method, the build system displays "YES" to FFMPEG, but "NO" to the individual modules (didn't debug further.)
Some users will find that they may need to supply the --sysroot linker argument in the linker flags, or specify -DCMAKE_SYSROOT as a build argument
Hope this helps someone :)

Related

How to automatically add a shared libraries to cache in yocto

I am climbing the learning curve of Yocto (Honister) trying to add an third party executable ELF file to my Linux image.
My current issue is that the ELF requires a couple of shared libraries e.g. libpam.so. I have created a recipe that builds these libraries from source code and puts then in the correct place in the file system, but they are not being added to the shared library cache (e.g. not listed when you run /sbin/ldconfig -p | grep pam on the resulting system).
I can correct this manually on a running system via /sbin/ldconfig /path/to/library but I assume I am missing a something in my do_install() step or something.
My reading of the various docs suggest that the bitbake build process should automatically sort this out
On a side note the library version of Linux-PAM is is 1.5.2 but the automake Makefile.am file specifies a version number of 0.85.1
libpam_la_LDFLAGS = -no-undefined -version-info 85:1:85
Is there a way I can access this 0.85.1 version number from an environment variable similar to ${PV} (which returns 1.5.2)
Thanks

Libjpeg-9d: ./configure --disable-shared still produce .so files on Linux

I am trying to build jpeg-9d library from sources on Alpine Linux (3.14.2).
I would like to obtain only static libraries (.a files) from libjpeg.
This is because I would like to get all 3rd party dependencies all-in-one into my application. And this is because I chose Alpine Linux due static musl C library.
The compilation actually was fine, all configure step, make, make install went fine.
./configure --disable-shared
make
make install
But after this I see libjpeg.so file in /usr/local/lib directory.
Actually both libjpeg.a and libjpeg.so are present in /usr/local/lib.
install.txt says that using --disable-shared should be enough.
But it does not work.
I built many 3rd party libraries into static configuration on Alpine Linux;
all of them produced .a files only (of course, I used additional configuration flags),
like zlib, bzip2, xz, zstd, libpng, giflib (small patch was required), expat, freetype2, fontconfig, json, openssl, tiff, boost, etc.
Previously I used libjpeg-6b, and instead of using just make install I used
make install-lib
command and I got only .a files. Old jpeg-6b supported install-lib target. But the new libjpeg-9d does not support this target in make files.
I think it is a bug in jpeg-9d configuration scripts.
Any chance to work-around it or even fix?
Actually --enable-shared=no works fine, no .so files are copied into /usr/local/lib!
So, I can use --enable-shared=no instead of --disable-shared.
./configure --enable-shared=no
make
make install
Maybe it is an issue of automake/autoconf Alpine Linux utilities.

arm-none-eabi-objdump: error while loading shared libraries: libdebuginfod.so.1: cannot open shared object file

If you have an answer for this, or further information, I'd welcome it. I'm following advice from here, to offer some unsolicited help by posting this question then an answer I've already found for it.
I have a bare-metal ARM board for which I'm building a cross-toolchain, from sources for GNU binutils, gcc and gdb, and for SourceWare's Newlib. I got those four working and cross-built a DoNothing.c into an ELF file - but I couldn't disassemble it with this:
$ arm-none-eabi-objdump -S DoNothing.elf
The error was:
$ arm-none-eabi-objdump: error while loading shared libraries: libdebuginfod.so.1: cannot open shared object file: No such file or directory
I'll follow up with a solution.
The error was correct - my system didn't have libdebuginfod.so.1 installed - but I have another cross-binutils, installed from binary for a different target, and its objdump -S works fine on the same host. Why would one build of objdump complain about missing that shared library, when clearly not all builds of objdump need it?
First I tried rebuilding cross binutils, specifying --without-debuginfod as a configure option. No change, which seems odd: surely that should build tools that not only don't use debuginfod but which don't depend on it in any way. (If someone can answer that, or point out what I've misunderstood, it may help people.)
Next I figured debuginfod was inescapable (for my cross-tools built from source at least), so I'd install it to get rid of the error. It's a component of the elfutils package, but installing the latest elfutils available for my Ubuntu 20.04 system didn't bring libdebuginfod.so.1 with it.
I found a later one, for Arch Linux, whose package contents suggested it would - but its package format doesn't match Ubuntu's and installing it was going to involve a lot of work. Instead I opted to build it from the Arch Linux source package. However, running ./configure on that gave a couple of infuriatingly similar errors:
configure: checking libdebuginfod dependencies, --disable-libdebuginfod or --enable-libdebuginfo=dummy to skip
...
configure: error: dependencies not found, use --disable-libdebuginfod to disable or --enable-libdebuginfod=dummy to build a (bootstrap) dummy library.
No combination of those suggestions would allow configure for elfutils-0.182 to run to completion.
The problem of course was my own lack of understanding. The solution came from the Linux From Scratch project: what worked was to issue configure with both of the suggested options, like this:
$ ./configure --prefix=/usr \
--disable-debuginfod \
--enable-libdebuginfod=dummy \
--libdir=/lib
That gave a clean configure; make worked first time, as did make check and then sudo make install which of course installed libdebuginfod.so.1 as required. I then had an arm-none-eabi-objdump which disassembles cross-compiled ELF files without complaining.

How do I Distribute my Haxe application with Hashlink?

I've got a Haxe Application that I want to make available to people with a Windows system. I use Hashlink to run the Application locally and it works very nicely.
I am wondering if I'm supposed to distribute my Application with Hashlink. Can it build me an .exe?
It looks like generating distributable binary files isn't supported out of the box today (March 10, 2017):
> haxe -main Main -hl main.c
Code generated in main.c automatic native compilation not yet implemented
Hopefully it will be supported soon!
Note: I'm talking about building a final executable using hashlink. An entirely separate approach I do not cover here is the possibility of delivering the hashlink virtual machine with your output hl bitcode.
Sane people stop reading here.
But in the meantime... it is possible to generate binaries with hashlink today if you build hashlink from source.
Warnings:
This isn't a generic, cross-platform answer to your question -- it's just my experience on Linux.
There will probably soon be a better way than this.
But I wanted to jot these notes down even for myself to recall later.
Here's what I had to do on Ubuntu 14.04, 64-bit:
Install prerequisite libraries for building hl (there may be others I already have installed, like build-essential, etc)
sudo apt-get install libvorbis-dev libturbojpeg libsdl2-dev libopenal-dev libssl-dev
Clone and build the mbedtls library: (rev note: b5ba28)
cd ~/dev/
git clone https://github.com/ARMmbed/mbedtls.git
cd mbedtls
make CFLAGS='-fPIC'
Clone the hashlink repo: (rev note: eaa92b)
cd ~/dev/
git clone https://github.com/HaxeFoundation/hashlink.git
cd hashlink
In the # Linux section of the Makefile, ~line 67, add these flags:
CFLAGS += -I ../mbedtls/include
LIBFLAGS += -L../mbedtls/library
Now build with make
If everything works, you'll see two important output files, hl and libhl.so
Ok, at this point, it's easiest if you just build your project in the hashlink directory. For example:
# Still in the hashlink directory
haxe -cp /path/to/my/project -debug -main Main.hx -hl src/_main.c
Now run make hlc, and if everything works, hlc is the output executable (which depends on libhl.so):
cp libhl.so hlc /tmp/
cd /tmp/
./hlc
Prints:
Main.hx:7: Hello world!

How do I configure Qt for cross-compilation from Linux to Windows target?

I want to cross compile the Qt libraries (and eventually my application) for a Windows x86_64 target using a Linux x86_64 host machine. I feel like I am close, but I may have a fundamental misunderstanding of some parts of this process.
I began by installing all the mingw packages on my Fedora machine and then modifying the win32-g++ qmake.conf file to fit my environment. However, I seem to be getting stuck with some seemingly obvious configure options for Qt: -platform and -xplatform. Qt documentation says that -platform should be the host machine architecture (where you are compiling) and -xplatform should be the target platform for which you wish to deploy. In my case, I set -platform linux-g++-64 and -xplatform linux-win32-g++ where linux-win32-g++ is my modified win32-g++ configuration.
My problem is that, after executing configure with these options, I see that it invokes my system's compiler instead of the cross compiler (x86_64-w64-mingw32-gcc). If I omit the -xplatform option and set -platform to my target spec (linux-win32-g++), it invokes the cross compiler but then errors when it finds some Unix related functions aren't defined.
Here is some output from my latest attempt: http://pastebin.com/QCpKSNev.
Questions:
When cross-compiling something like Qt for Windows from a Linux host, should the native compiler ever be invoked? That is, during a cross compilation process, shouldn't we use only the cross compiler? I don't see why Qt's configure script tries to invoke my system's native compiler when I specify the -xplatform option.
If I'm using a mingw cross-compiler, when will I have to deal with a specs file? Spec files for GCC are still sort of a mystery to me, so I am wondering if some background here will help me.
In general, beyond specifying a cross compiler in my qmake.conf, what else might I need to consider?
Just use M cross environment (MXE). It takes the pain out of the whole process:
Get it:
$ git clone https://github.com/mxe/mxe.git
Install build dependencies
Build Qt for Windows, its dependencies, and the cross-build tools;
this will take about an hour on a fast machine with decent internet access;
the download is about 500MB:
$ cd mxe && make qt
Go to the directory of your app and add the cross-build tools to the PATH environment variable:
$ export PATH=<mxe root>/usr/bin:$PATH
Run the Qt Makefile generator tool then build:
$ <mxe root>/usr/i686-pc-mingw32/qt/bin/qmake && make
You should find the binary in the ./release directory:
$ wine release/foo.exe
Some notes:
Use the master branch of the MXE repository; it appears to get a lot more love from the development team.
The output is a 32-bit static binary, which will work well on 64-bit Windows.
(This is an update of #Tshepang's answer, as MXE has evolved since his answer)
Building Qt
Rather than using make qt to build Qt, you can use MXE_TARGETS to control your target machine and toolchain (32- or 64-bit). MXE started using .static and .shared as a part of the target name to show which type of lib you want to build.
# The following is the same as `make qt`, see explanation on default settings after the code block.
make qt MXE_TARGETS=i686-w64-mingw32.static # MinGW-w64, 32-bit, static libs
# Other targets you can use:
make qt MXE_TARGETS=x86_64-w64-mingw32.static # MinGW-w64, 64-bit, static libs
make qt MXE_TARGETS=i686-w64-mingw32.shared # MinGW-w64, 32-bit, shared libs
# You can even specify two targets, and they are built in one run:
# (And that's why it is MXE_TARGET**S**, not MXE_TARGET ;)
# MinGW-w64, both 32- and 64-bit, static libs
make qt MXE_TARGETS='i686-w64-mingw32.static x86_64-w64-mingw32.static'
In #Tshepang's original answer, he did not specify an MXE_TARGETS, and the default is used. At the time he wrote his answer, the default was i686-pc-mingw32, now it's i686-w64-mingw32.static. If you explicitly set MXE_TARGETS to i686-w64-mingw32, omitting .static, a warning is printed because this syntax is now deprecated. If you try to set the target to i686-pc-mingw32, it will show an error as MXE has removed support for MinGW.org (i.e. i686-pc-mingw32).
Running qmake
As we changed the MXE_TARGETS, the <mxe root>/usr/i686-pc-mingw32/qt/bin/qmake command will no longer work. Now, what you need to do is:
<mxe root>/usr/<TARGET>/qt/bin/qmake
If you didn't specify MXE_TARGETS, do this:
<mxe root>/usr/i686-w64-mingw32.static/qt/bin/qmake
Update: The new default is now i686-w64-mingw32.static
Another way to cross-compile software for Windows on Linux is the MinGW-w64 toolchain on Archlinux. It is easy to use and maintain, and it provides recent versions of the compiler and many libraries. I personally find it easier than MXE and it seems to adopt newer versions of libraries faster.
First, you will need an arch-based machine (virtual machine or docker container will suffice). It does not have to be Arch Linux, derivatives will do as well. I used Manjaro Linux.
Most of the MinGW-w64 packages are not available at the official Arch repositories, but there is plenty in AUR. The default package manager for Arch (Pacman) does not support installation directly from AUR, so you will need to install and use an AUR wrapper like yay or yaourt. Then installing MinGW-w64 version of Qt5 and Boost libraries is as easy as:
yay -Sy mingw-w64-qt5-base mingw-w64-boost
#yaourt -Sy mingw-w64-qt5-base mingw-w64-qt5-boost #if you use yaourt
This will also install the MinGW-w64 toolchain (mingw-w64-gcc) and other dependencies.
Cross-compiling a Qt project for windows (x64) is then as simple as:
x86_64-w64-mingw32-qmake-qt5
make
To deploy your program you will need to copy corresponding dlls from /usr/x86_64-w64-mingw32/bin/. For example, you will typically need to copy /usr/x86_64-w64-mingw32/lib/qt/plugins/platforms/qwindows.dll to program.exe_dir/platforms/qwindows.dll.
To get a 32bit version you simply need to use i686-w64-mingw32-qmake-qt5 instead. Cmake-based projects work just as easily with x86_64-w64-mingw32-cmake.
This approach worked extremely well for me, was the easiest to set-up, maintain, and extend.
It also goes well with continuous integration services. There are docker images available too.
For example, let's say I want to build QNapi subtitle downloader GUI. I could do it in two steps:
Start the docker container:
sudo docker run -it burningdaylight/mingw-arch:qt /bin/bash
Clone and compile QNapi
git clone --recursive 'https://github.com/QNapi/qnapi.git'
cd qnapi/
x86_64-w64-mingw32-qmake-qt5
make
That's it! In many cases, it will be that easy. Adding your own libraries to the package repository (AUR) is also straightforward. You would need to write a PKBUILD file, which is as intuitive as it can get, see mingw-w64-rapidjson, for example.
Ok I think I've got it figured out.
Based in part on https://github.com/mxe/mxe/blob/master/src/qt.mk and https://www.videolan.org/developers/vlc/contrib/src/qt4/rules.mak
It appears that "initially" when you run configure (with -xtarget, etc.), it configures then runs your "hosts" gcc to build the local binary file ./bin/qmake
./configure -xplatform win32-g++ -device-option CROSS_COMPILE=$cross_prefix_here -nomake examples ...
then you run normal "make" and it builds it for mingw
make
make install
so
yes
only if you need to use something other than msvcrt.dll (its default). Though I have never used anything else so I don't know for certain.
https://stackoverflow.com/a/18792925/32453 lists some configure params.
In order to compile Qt, one must run it's configure script, specifying the host platform with -platform (e.g. -platform linux-g++-64 if you're building on a 64-bit linux with the g++ compiler) and the target platform with -xplatform (e.g. -xplatform win32-g++ if you're cross compiling to windows).
I've also added this flag:
-device-option CROSS_COMPILE=/usr/bin/x86_64-w64-mingw32-
which specifies the prefix of the toolchain I'm using, which will get prepended to 'gcc' or 'g++' in all the makefiles that are building binaries for windows.
Finally, you might get problems while building icd, which apparently is something that is used to add ActiveX support to Qt. You can avoid that by passing the flag -skip qtactiveqt to the configure script. I've got this one out of this bug report: https://bugreports.qt.io/browse/QTBUG-38223
Here's the whole configure command I've used:
cd qt_source_directory
mkdir my_build
cd my_build
../configure \
-release \
-opensource \
-no-compile-examples \
-platform linux-g++-64 \
-xplatform win32-g++ \
-device-option CROSS_COMPILE=/usr/bin/x86_64-w64-mingw32- \
-skip qtactiveqt \
-v
As for yout questions:
1 - Yes. The native compiler will be called in order to build some tools that are needed in the build process. Maybe things like qconfig or qmake, but I'm not entirely sure which tools, exactly.
2 - Sorry. I have no idea what specs files are in the context of compilers =/ . But as far as I know, you wouldn't have to deal with that.
3 - You can specify the cross compiler prefix in the configure command line instead of doing it in the qmake.conf file, as mentioned above. And there's also that problem with idc, whose workaround I've mentioned as well.

Resources