Coldfusion limit to total number of threads - multithreading

I've got some code that is trying to create 100 threaded http calls. It seems to be getting capped at about 40.
When I do threadJoin I'm only getting 38 - 40 sets of results from my http calls, despite the loop being from 1 - 100.
// thread http calls
pages = 100;
for (page="1";page <= pages; page++) {
thread name="req#page#" {
grabber.setURL('http://site.com/search.htm');
// request headers
grabber.addParam(type="url",name="page",value="#page#");
results = grabber.send().getPrefix();
arrayAppend(VARIABLES.arrResults,results.fileContent);
}
}
// rejoin threads
for (page="2";page <= pages; page++) {
threadJoin('req#page#',10000);
}
Is there a limit to the number of threads that CF can create? Is it to do with Java running in the background? Or can it not handle that many http requests?
Is there a just a much better way for me to do this than threaded HTTP calls?

The result you're seeing is likely because your variables aren't thread safe.
grabber.addParam(type="url",name="page",value="#page#");
That line is accessing Variables.Page which is shared by all of the spawned threads. Because threads start at different times, the value of page is often different from the value you think it is. This will lead to multiple threads having the same value for page.
Instead, if you pass page as an attribute to the thread, then each thread will have its own version of the variable, and you will end up with 100 unique values. (1-100).
Additionally you're writing to a shared variable as well.
arrayAppend(VARIABLES.arrResults,results.fileContent);
ArrayAppend is not thread safe and you will be overwriting versions of VARIABLES.arrResults with other versions of itself, instead of appending each bit.
You want to set the result to a thread variable, and then access that once the joins are complete.
thread name="req#page#" page=Variables.page {
grabber.setURL('http://site.com/search.htm');
// request headers
grabber.addParam(type="url",name="page",value="#Attributes.page#");
results = grabber.send().getPrefix();
thread.Result = results.fileContent;
}
And the join:
// rejoin threads
for (page="2";page <= pages; page++) {
threadJoin('req#page#',10000);
arrayAppend(VARIABLES.arrResults, CFThread['req#page#'].Result);
}

In the ColdFusion administrator, there's a setting for how many will run concurrently, mine's defaulted to 10. The rest apparently are queued. An Phantom42 mentions, you can up the number of running CF threads, however, with 100 or more threads, you may run into other problems.
On 32-bit processes, your whole process can only use 2gig of memory. Each thread uses up an amount of Stack memory, which isn't part of the heap. We've had problems with running out of memory with high numbers of threads as your Java Binary+Heap+Non-Heap(PermGen)+(threads*512k) can easily go over the 2-gig limit.
You'd also have to allow enough threads to handle your code above, as well as other requests coming into your app, which may bog down the app as a whole.
I would suggest changing your code to create N threads, each of which does more than 1 request. It's more work, but you break the N requests=N Threads problem. There's a couple of approaches you can take:
If you think that each request is going to take roughly the same time, then you can split up the work and give each thread a portion to work on before you start each one up.
Or each thread picks a URL off a list and processes it, you can then join to all N threads. You'd need to make sure you put locking around whatever counter you used to track progress though.

Check your Maximum number of running JRun threads setting in ColdFusion Administrator under the Request Tuning tab. The default is 50.

Related

How to control multi-threads synchronization in Perl

I got array with [a-z,A-Z] ASCII numbers like so: my #alphabet = (65..90,97..122);
So main thread functionality is checking each character from alphabet and return string if condition is true.
Simple example :
my #output = ();
for my $ascii(#alphabet){
thread->new(\sub{ return chr($ascii); });
}
I want to run thread on every ASCII number, then put letter from thread function into array in the correct order.
So in out case array #output should be dynamic and contain [a..z,A-Z] after all threads finish their job.
How to check, is all threads is done and keep the order?
You're looking for $thread->join, which waits for a thread to finish. It's documented here, and this SO question may also help.
Since in your case it looks like the work being done in the threads is roughly equal in cost (no thread is going to take a long time more than any other), you can just join each thread in order, like so, to wait for them all to finish:
# Store all the threads for each letter in an array.
my #threads = map { thread->new(\sub{ return chr($_); }) } #alphabet;
my #results = map { $_->join } #threads;
Since, when the first thread returns from join, the others are likely already done and just waiting for "join" to grab their return code, or about to be done, this gets you pretty close to "as fast as possible" parallelism-wise, and, since the threads were created in order, #results is ordered already for free.
Now, if your threads can take variable amounts of time to finish, or if you need to do some time-consuming processing in the "main"/spawning thread before plugging child threads' results into the output data structure, joining them in order might not be so good. In that case, you'll need to somehow either: a) detect thread "exit" events as they happen, or b) poll to see which threads have exited.
You can detect thread "exit" events using signals/notifications sent from the child threads to the main/spawning thread. The easiest/most common way to do that is to use the cond_wait and cond_signal functions from threads::shared. Your main thread would wait for signals from child threads, process their output, and store it into the result array. If you take this approach, you should preallocate your result array to the right size, and provide the output index to your threads (e.g. use a C-style for loop when you create your threads and have them return ($result, $index_to_store) or similar) so you can store results in the right place even if they are out of order.
You can poll which threads are done using the is_joinable thread instance method, or using the threads->list(threads::joinable) and threads->list(threads::running) methods in a loop (hopefully not a busy-waiting one; adding a sleep call--even a subsecond one from Time::HiRes--will save a lot of performance/battery in this case) to detect when things are done and grab their results.
Important Caveat: spawning a huge number of threads to perform a lot of work in parallel, especially if that work is small/quick to complete, can cause performance problems, and it might be better to use a smaller number of threads that each do more than one "piece" of work (e.g. spawn a small number of threads, and each thread uses the threads::shared functions to lock and pop the first item off of a shared array of "work to do" and do it rather than map work to threads as 1:1). There are two main performance problems that arise from a 1:1 mapping:
the overhead (in memory and time) of spawning and joining each thread is much higher than you'd think (benchmark it on threads that don't do anything, just return, to see). If the work you need to do is fast, the overhead of thread management for tons of threads can make it much slower than just managing a few re-usable threads.
If you end up with a lot more threads than there are logical CPU cores and each thread is doing CPU-intensive work, or if each thread is accessing the same resource (e.g. reading from the same disks or the same rows in a database), you hit a performance cliff pretty quickly. Tuning the number of threads to the "resources" underneath (whether those are CPUs or hard drives or whatnot) tends to yield much better throughput than trusting the thread scheduler to switch between many more threads than there are available resources to run them on. The reasons this is slow are, very broadly:
Because the thread scheduler (part of the OS, not the language) can't know enough about what each thread is trying to do, so preemptive scheduling cannot optimize for performance past a certain point, given that limited knowledge.
The OS usually tries to give most threads a reasonably fair shot, so it can't reliably say "let one run to completion and then run the next one" unless you explicitly bake that into the code (since the alternative would be unpredictably starving certain threads for opportunities to run). Basically, switching between "run a slice of thread 1 on resource X" and "run a slice of thread 2 on resource X" doesn't get you anything once you have more threads than resources, and adds some overhead as well.
TL;DR threads don't give you performance increases past a certain point, and after that point they can make performance worse. When you can, reuse a number of threads corresponding to available resources; don't create/destroy individual threads corresponding to tasks that need to be done.
Building on Zac B's answer, you can use the following if you want to reuse threads:
use strict;
use warnings;
use Thread::Pool::Simple qw( );
$| = 1;
my $pool = Thread::Pool::Simple->new(
do => [ sub {
select(undef, undef, undef, (200+int(rand(8))*100)/1000);
return chr($_[0]);
} ],
);
my #alphabet = ( 65..90, 97..122 );
print $pool->remove($_) for map { $pool->add($_) } #alphabet;
print "\n";
The results are returned in order, as soon as they become available.
I'm the author of Parallel::WorkUnit so I'm partial to it. And I thought adding ordered responses was actually a great idea. It does it with forks, not threads, because forks are more widely supported and they often perform better in Perl.
my $wu = Parallel::WorkUnit->new();
for my $ascii(#alphabet){
$wu->async(sub{ return chr($ascii); });
}
#output = $wu->waitall();
If you want to limit the number of simultaneous processes:
my $wu = Parallel::WorkUnit->new(max_children => 5);
for my $ascii(#alphabet){
$wu->queue(sub{ return chr($ascii); });
}
#output = $wu->waitall();

node.js C addon queueing by uv_queue_work

I have created a C node.js addon with the help of libUV to make the addon asynchronous.
I have made several queues for this.
The code is like this, loopArray is used for storing those queues:
//... variables declarations
void AsyncWork(uv_work_t* req) {
// ...
}
void AsyncAfter(uv_work_t* req) {
// ...
}
Handle<Value> RunCallback(const Arguments& args) {
// ... some preparation work
int loopNumber = (rand() % 10);
int status = uv_queue_work(loopArray[loopNumber], &baton->request, AsyncWork, AsyncAfter);
uv_run(loopArray[loopNumber]);
return Undefined();
}
extern "C" {
static void Init(Handle<Object> target) {
int i = 0;
for (i = 0; i< 10; i++){
loopArray[i] = uv_loop_new();
}
target->Set(String::NewSymbol("callback"), FunctionTemplate::New(RunCallback)->GetFunction());
}
}
NODE_MODULE(addon, Init)
The problem is that, even I created 10 queues for the CPU-demanding tasks. node.js does not switch between tasks while processing one of the queue. Is it due to the single-thread nature of node.js?
Is so, does uv_thread_create helps the situtation?
I cannot find any code sample for this, so I am not sure how to use it.
Thanks!
That is the main idea behind node's architecture: Using function call(back)s and a main event loop to run them instead of using threads to process multiple jobs in parallel.
If what you want to do is to process a queue of jobs, the best way to do it is doing one job at a time. Utilizing multiple cpu cores on a system is done by multiple node instances instead of threads. We have child_process and cluster node modules for this.
When you create multiple threads, let's say you want to run 10 threads for your work, if your system has 8 cpu cores, you are killing the performance by giving unnecessary work to operating system's scheduler. This is a very important point you should take into account. If you have 8 cores, you should not create more than 8 threads in parallel if you want the maximum performance.
For node, we don't try to create multiple queues or threads in one process. Instead, we employ multiple node processes, again maximum one process per core.
If you are going to process a queue which is already there. In this kind of work, you do not need your C module to be asynchronous.
We want asynchronous behavior when we have jobs coming from outside like http requests on a web server. On a web server, our job comes in a way that we cannot control. People and other machines connect to our server whenever they want and we want to answer each of them as quickly as possible. For this, we do not want any request to block others. We need to handle as many requests as we can in parallel.
If you are running on rows of a database table or making some calculations over a long list of parameters however, you are in a very different kind of business. You have your job queue in front of you waiting for your way of management. Your jobs are not coming to your system in a way you have no control over. In this kind of business, to reach the ultimate efficiency and hit the topmost profits, you should run jobs one after another without any switching between them. Parallelism is only good when you have multiple cores and to employ them, the best practice for node is to use multiple node processes.

What happens when a single request takes a long time with these non-blocking I/O servers?

With Node.js, or eventlet or any other non-blocking server, what happens when a given request takes long, does it then block all other requests?
Example, a request comes in, and takes 200ms to compute, this will block other requests since e.g. nodejs uses a single thread.
Meaning your 15K per second will go down substantially because of the actual time it takes to compute the response for a given request.
But this just seems wrong to me, so I'm asking what really happens as I can't imagine that is how things work.
Whether or not it "blocks" is dependent on your definition of "block". Typically block means that your CPU is essentially idle, but the current thread isn't able to do anything with it because it is waiting for I/O or the like. That sort of thing doesn't tend to happen in node.js unless you use the non-recommended synchronous I/O functions. Instead, functions return quickly, and when the I/O task they started complete, your callback gets called and you take it from there. In the interim, other requests can be processed.
If you are doing something computation-heavy in node, nothing else is going to be able to use the CPU until it is done, but for a very different reason: the CPU is actually busy. Typically this is not what people mean when they say "blocking", instead, it's just a long computation.
200ms is a long time for something to take if it doesn't involve I/O and is purely doing computation. That's probably not the sort of thing you should be doing in node, to be honest. A solution more in the spirit of node would be to have that sort of number crunching happen in another (non-javascript) program that is called by node, and that calls your callback when complete. Assuming you have a multi-core machine (or the other program is running on a different machine), node can continue to respond to requests while the other program crunches away.
There are cases where a cluster (as others have mentioned) might help, but I doubt yours is really one of those. Clusters really are made for when you have lots and lots of little requests that together are more than a single core of the CPU can handle, not for the case where you have single requests that take hundreds of milliseconds each.
Everything in node.js runs in parallel internally. However, your own code runs strictly serially. If you sleep for a second in node.js, the server sleeps for a second. It's not suitable for requests that require a lot of computation. I/O is parallel, and your code does I/O through callbacks (so your code is not running while waiting for the I/O).
On most modern platforms, node.js does us threads for I/O. It uses libev, which uses threads where that works best on the platform.
You are exactly correct. Nodejs developers must be aware of that or their applications will be completely non-performant, if long running code is not asynchronous.
Everything that is going to take a 'long time' needs to be done asynchronously.
This is basically true, at least if you don't use the new cluster feature that balances incoming connections between multiple, automatically spawned workers. However, if you do use it, most other requests will still complete quickly.
Edit: Workers are processes.
You can think of the event loop as 10 people waiting in line to pay their bills. If somebody is taking too much time to pay his bill (thus blocking the event loop), the other people will just have to hang around waiting for their turn to come.. and waiting...
In other words:
Since the event loop is running on a single thread, it is very
important that we do not block it’s execution by doing heavy
computations in callback functions or synchronous I/O. Going over a
large collection of values/objects or performing time-consuming
computations in a callback function prevents the event loop from
further processing other events in the queue.
Here is some code to actually see the blocking / non-blocking in action:
With this example (long CPU-computing task, non I/O):
var net = require('net');
handler = function(req, res) {
console.log('hello');
for (i = 0; i < 10000000000; i++) { a = i + 5; }
}
net.createServer(handler).listen(80);
if you do 2 requests in the browser, only a single hello will be displayed in the server console, meaning that the second request cannot be processed because the first one blocks the Node.js thread.
If we do an I/O task instead (write 2 GB of data on disk, it took a few seconds during my test, even on a SSD):
http = require('http');
fs = require('fs');
buffer = Buffer.alloc(2*1000*1000*1000);
first = true;
done = false;
write = function() {
fs.writeFile('big.bin', buffer, function() { done = true; });
}
handler = function(req, res) {
if (first) {
first = false;
res.end('Starting write..')
write();
return;
}
if (done) {
res.end("write done.");
} else {
res.end('writing ongoing.');
}
}
http.createServer(handler).listen(80);
here we can see that the a-few-second-long-IO-writing-task write is non-blocking: if you do other requests in the meantime, you will see writing ongoing.! This confirms the well-known non-blocking-for-IO features of Node.js.

multithreading: how to process data in a vector, while the vector is being populated?

I have a single-threaded linux app which I would like to make parallel. It reads a data file, creates objects, and places them in a vector. Then it calls a compute-intensive method (.5 second+) on each object. I want to call the method in parallel with object creation. While I've looked at qt and tbb, I am open to other options.
I planned to start the thread(s) while the vector was empty. Each one would call makeSolids (below), which has a while loop that would run until interpDone==true and all objects in the vector have been processed. However, I'm a n00b when it comes to threading, and I've been looking for a ready-made solution.
QtConcurrent::map(Iter begin,Iter end,function()) looks very easy, but I can't use it on a vector that's changing in size, can I? And how would I tell it to wait for more data?
I also looked at intel's tbb, but it looked like my main thread would halt if I used parallel_for or parallel_while. That stinks, since their memory manager was recommended (open cascade's mmgt has poor performance when multithreaded).
/**intended to be called by a thread
\param start the first item to get from the vector
\param skip how many to skip over (4 for 4 threads)
*/
void g2m::makeSolids(uint start, uint incr) {
uint curr = start;
while ((!interpDone) || (lineVector.size() > curr)) {
if (lineVector.size() > curr) {
if (lineVector[curr]->isMotion()) {
((canonMotion*)lineVector[curr])->setSolidMode(SWEPT);
((canonMotion*)lineVector[curr])->computeSolid();
}
lineVector[curr]->setDispMode(BEST);
lineVector[curr]->display();
curr += incr;
} else {
uio::sleep(); //wait a little bit for interp
}
}
}
EDIT: To summarize, what's the simplest way to process a vector at the same time that the main thread is populating the vector?
Firstly, to benefit from threading you need to find similarly slow tasks for each thread to do. You said your per-object processing takes .5s+, how long does your file reading / object creation take? It could easily be a tenth or a thousandth of that time, in which case your multithreading approach is going to produce neglegible benefit. If that's the case, (yes, I'll answer your original question soon incase it's not) then think about simultaneously processing multiple objects. Given your processing takes quite a while, the thread creation overhead isn't terribly significant, so you could simply have your main file reading/object creation thread spawn a new thread and direct it at the newly created object. The main thread then continues reading/creating subsequent objects. Once all objects are read/created, and all the processing threads launched, the main thread "joins" (waits for) the worker threads. If this will create too many threads (thousands), then put a limit on how far ahead the main thread is allowed to get: it might read/create 10 objects then join 5, then read/create 10, join 10, read/create 10, join 10 etc. until finished.
Now, if you really want the read/create to be in parallel with the processing, but the processing to be serialised, then you can still use the above approach but join after each object. That's kind of weird if you're designing this with only this approach in mind, but good because you can easily experiment with the object processing parallelism above as well.
Alternatively, you can use a more complex approach that just involves the main thread (that the OS creates when your program starts), and a single worker thread that the main thread must start. They should be coordinated using a mutex (a variable ensuring mutually-exclusive, which means not-concurrent, access to data), and a condition variable which allows the worker thread to efficiently block until the main thread has provided more work. The terms - mutex and condition variable - are the standard terms in the POSIX threading that Linux uses, so should be used in the explanation of the particular libraries you're interested in. Summarily, the worker thread waits until the main read/create thread broadcasts it a wake-up signal indicating another object is ready for processing. You may want to have a counter with index of the last fully created, ready-for-processing object, so the worker thread can maintain it's count of processed objects and move along the ready ones before once again checking the condition variable.
It's hard to tell if you have been thinking about this problem deeply and there is more than you are letting on, or if you are just over thinking it, or if you are just wary of threading.
Reading the file and creating the objects is fast; the one method is slow. The dependency is each consecutive ctor depends on the outcome of the previous ctor - a little odd - but otherwise there are no data integrity issues so there doesn't seem to be anything that needs to be protected by mutexes and such.
Why is this more complicated than something like this (in crude pseudo-code):
while (! eof)
{
readfile;
object O(data);
push_back(O);
pthread_create(...., O, makeSolid);
}
while(x < vector.size())
{
pthread_join();
x++;
}
If you don't want to loop on the joins in your main then spawn off a thread to wait on them by passing a vector of TIDs.
If the number of created objects/threads is insane, use a thread pool. Or put a counter is the creation loop to limit the number of threads that can be created before running ones are joined.
#Caleb: quite -- perhaps I should have emphasized active threads. The GUI thread should always be considered one.

What can make a program run slower when using more threads?

This question is about the same program I previously asked about. To recap, I have a program with a loop structure like this:
for (int i1 = 0; i1 < N; i1++)
for (int i2 = 0; i2 < N; i2++)
for (int i3 = 0; i3 < N; i3++)
for (int i4 = 0; i4 < N; i4++)
histogram[bin_index(i1, i2, i3, i4)] += 1;
bin_index is a completely deterministic function of its arguments which, for purposes of this question, does not use or change any shared state - in other words, it is manifestly reentrant.
I first wrote this program to use a single thread. Then I converted it to use multiple threads, such that thread n runs all iterations of the outer loop where i1 % nthreads == n. So the function that runs in each thread looks like
for (int i1 = n; i1 < N; i1 += nthreads)
for (int i2 = 0; i2 < N; i2++)
for (int i3 = 0; i3 < N; i3++)
for (int i4 = 0; i4 < N; i4++)
thread_local_histogram[bin_index(i1, i2, i3, i4)] += 1;
and all the thread_local_histograms are added up in the main thread at the end.
Here's the strange thing: when I run the program with just 1 thread for some particular size of the calculation, it takes about 6 seconds. When I run it with 2 or 3 threads, doing exactly the same calculation, it takes about 9 seconds. Why is that? I would expect that using 2 threads would be faster than 1 thread since I have a dual-core CPU. The program does not use any mutexes or other synchronization primitives so two threads should be able to run in parallel.
For reference: typical output from time (this is on Linux) for one thread:
real 0m5.968s
user 0m5.856s
sys 0m0.064s
and two threads:
real 0m9.128s
user 0m10.129s
sys 0m6.576s
The code is at http://static.ellipsix.net/ext-tmp/distintegral.ccs
P.S. I know there are libraries designed for exactly this kind of thing that probably could have better performance, but that's what my last question was about so I don't need to hear those suggestions again. (Plus I wanted to use pthreads as a learning experience.)
To avoid further comments on this: When I wrote my reply, the questioner hasn't posted a link to his source yet, so I could not tailor my reply to his specific issues. I was only answering the general question what "can" cause such an issue, I never said that this will necessarily apply to his case. When he posted a link to his source, I wrote another reply, that is exactly only focusing on his very issue (which is caused by the use of the random() function as I explained in my other reply). However, since the question of this post is still "What can make a program run slower when using more threads?" and not "What makes my very specific application run slower?", I've seen no need to change my rather general reply either (general question -> general response, specific question -> specific response).
1) Cache Poisoning
All threads access the same array, which is a block of memory. Each core has its own cache to speed up memory access. Since they don't just read from the array but also change the content, the content is changed actually in the cache only, not in real memory (at least not immediately). The problem is that the other thread on the other core may have overlapping parts of memory cached. If now core 1 changes the value in the cache, it must tell core 2 that this value has just changed. It does so by invalidating the cache content on core 2 and core 2 needs to re-read the data from memory, which slows processing down. Cache poisoning can only happen on multi-core or multi-CPU machines. If you just have one CPU with one core this is no problem. So to find out if that is your issue or not, just disable one core (most OSes will allow you to do that) and repeat the test. If it is now almost equally fast, that was your problem.
2) Preventing Memory Bursts
Memory is read fastest if read sequentially in bursts, just like when files are read from HD. Addressing a certain point in memory is actually awfully slow (just like the "seek time" on a HD), even if your PC has the best memory on the market. However, once this point has been addressed, sequential reads are fast. The first addressing goes by sending a row index and a column index and always having waiting times in between before the first data can be accessed. Once this data is there, the CPU starts bursting. While the data is still on the way it sends already the request for the next burst. As long as it is keeping up the burst (by always sending "Next line please" requests), the RAM will continue to pump out data as fast as it can (and this is actually quite fast!). Bursting only works if data is read sequentially and only if the memory addresses grow upwards (AFAIK you cannot burst from high to low addresses). If now two threads run at the same time and both keep reading/writing memory, however both from completely different memory addresses, each time thread 2 needs to read/write data, it must interrupt a possible burst of thread 1 and the other way round. This issue gets worse if you have even more threads and this issue is also an issue on a system that has only one single-core CPU.
BTW running more threads than you have cores will never make your process any faster (as you mentioned 3 threads), it will rather slow it down (thread context switches have side effects that reduce processing throughput) - that is unlike you run more threads because some threads are sleeping or blocking on certain events and thus cannot actively process any data. In that case it may make sense to run more threads than you have cores.
Everything I said so far in my other reply holds still true on general, as your question was what "can"... however now that I've seen your actual code, my first bet would be that your usage of the random() function slows everything down. Why?
See, random keeps a global variable in memory that stores the last random value calculated there. Each time you call random() (and you are calling it twice within a single function) it reads the value of this global variable, performs a calculation (that is not so fast; random() alone is a slow function) and writes the result back there before returning it. This global variable is not per thread, it is shared among all threads. So what I wrote regarding cache poisoning applies here all the time (even if you avoided it for the array by having separated arrays per thread; this was very clever of you!). This value is constantly invalidated in the cache of either core and must be re-fetched from memory. However if you only have a single thread, nothing like that happens, this variable never leaves cache after it has been initially read, since it's permanently accessed again and again and again.
Further to make things even worse, glibc has a thread-safe version of random() - I just verified that by looking at the source. While this seems to be a good idea in practice, it means that each random() call will cause a mutex to be locked, memory to be accessed, and a mutex to be unlocked. Thus two threads calling random exactly the same moment will cause one thread to be blocked for a couple of CPU cycles. This is implementation specific, though, as AFAIK it is not required that random() is thread safe. Most standard lib functions are not required to be thread-safe, since the C standard is not even aware of the concept of threads in the first place. When they are not calling it the same moment, the mutex will have no influence on speed (as even a single threaded app must lock/unlock the mutex), but then cache poisoning will apply again.
You could pre-build an array with random numbers for every thread, containing as many random number as each thread needs. Create it in the main thread before spawning the threads and add a reference to it to the structure pointer you hand over to every thread. Then get the random numbers from there.
Or just implement your own random number generator if you don't need the "best" random numbers on the planet, that works with per-thread memory for holding its state - that one might be even faster than the system's built-in generator.
If a Linux only solution works for you, you can use random_r. It allows you to pass the state with every call. Just use a unique state object per thread. However this function is a glibc extension, it is most likely not supported by other platforms (neither part of the C standards nor of the POSIX standards AFAIK - this function does not exist on Mac OS X for example, it may neither exist in Solaris or FreeBSD).
Creating an own random number generator is actually not that hard. If you need real random numbers, you shouldn't use random() in the first place. Random only creates pseudo-random numbers (numbers that look random, but are predictable if you know the generator's internal state). Here's the code for one that produces good uint32 random numbers:
static uint32_t getRandom(uint32_t * m_z, uint32_t * m_w)
{
*m_z = 36969 * (*m_z & 65535) + (*m_z >> 16);
*m_w = 18000 * (*m_w & 65535) + (*m_w >> 16);
return (*m_z << 16) + *m_w;
}
It's important to "seed" m_z and m_w in a proper way somehow, otherwise the results are not random at all. The seed value itself should already be random, but here you could use the system random number generator.
uint32_t m_z = random();
uint32_t m_w = random();
uint32_t nextRandom;
for (...) {
nextRandom = getRandom(&m_z, &m_w);
// ...
}
This way every thread only needs to call random() twice and then uses your own generator. BTW, if you need double randoms (that are between 0 and 1), the function above can be easily wrapped for that:
static double getRandomDouble(uint32_t * m_z, uint32_t * m_w)
{
// The magic number below is 1/(2^32 + 2).
// The result is strictly between 0 and 1.
return (getRandom(m_z, m_w) + 1) * 2.328306435454494e-10;
}
Try to make this change in your code and let me know how the benchmark results are :-)
You are seeing cache line bouncing. I'm really surprised that you don't get wrong results, due to race conditions on the histogram buckets.
One possibility is that the time taken to create the threads exceeds the savings gained by using threads. I would think that N is not very large, if the elapsed time is only 6 seconds for a O(n^4) operation.
There's also no guarantee that multiple threads will run on different cores or CPUs. I'm not sure what the default thread affinity is with Linux - it may be that both threads run on a single core which would negate the benefits of a CPU-intensive piece of code such as this.
This article details default thread affinity and how to change your code to ensure threads run on specific cores.
Even though threads don't access the same elements of the array at the same, the whole array may sit in a few memory pages. When one core/processor writes to that page, it has to invalidate its cache for all other processors.
Avoid having many threads working over the same memory space. Allocate separate data for each thread to work upon, then join them together when the calculation finishes.
Off the top of my head:
Context switches
Resource contention
CPU contention (if they aren't getting split to multiple CPUs).
Cache thrashing
David,
Are you sure you run a kernel that supports multiple processors? If only one processor is utilized in your system, spawning additional CPU-intensive threads will slow down your program.
And, are you sure support for threads in your system actually utilizes multiple processors? Does top, for example, show that both cores in your processor utilized when you run your program?

Resources