Depth of object and depth perception - graphics

What is the relationship between the depth of the target 3D object that you wish to draw perception on, and the perceptive depth that is visible.
E.g. if I know a square is x by y by z and I wish to draw it in perspective at distance d hwo do I know how long the z (depth) line should be drawn in relation to the vanishing point (should I draw it 2/3's of the way or 1/5th of the way).
Is there a relation between the two, like; multiply the depth by DepthObject / distanceToVanishingPoint = perceptiveDepth.
THanks.

With perspective projection, your view frustum appears like a triangle from a top (x, z) view. You have a nice theorem which explains the relation between sides of triangles and parallel lines.
For a more practical solution, you should have a closer look at projection matrices.

Related

Circle triangulation

I am currently experimenting with openGL, and I'm drawing a lot of circles that I have to break down to triangles (triangulate a circle).
I've been calculating the vertices of the triangles by having an angle that is incremented, and using cos() and sin() to get the x and y values for one vertex.
I searched a bit on the internet about the best and most efficient way of doing this, and even though there's not much information avaliable realized that thin and long triangles (my approach) are not very good. A better approach would be to start with an equilateral triangle and then repeatedly add triangles that cover the larges possible area that's not yet covered.
left - my method; right - new method
I am wondering if this is the most efficient way of doing this, and if yes, how would that be implemented in actual code.
The website where I found the method: link
both triangulations has their pros and cons
The Triangle FAN has equal sized triangles which sometimes looks better with textures (and other interpolated stuff) and the code to generate is simple for loop with parametric circle equation.
The increasing detail mesh has less triangles and can easily support LOD which might be faster. However number of points is not arbitrary (3,6,12,24,48,...). The code is slightly more complicated you could:
start with equilateral triangle remembering circumference edges
so add triangle (p0,p1,p2) to mesh and edges (p0,p1),(p1,p2),(p2,p0) to circumference.
for each edge (p0,p1) of circumference
compute:
p2 = 0.5*(p0+p1); // mid point
p2 = r*p2/|p2|; // normalize it to circle circumference assuming (0,0) is center
add triangle (p0,p1,p2) to mesh and replace p0,p1 edge with (p0,p2),(p2,p1) edges
note that r/|p2| will be the same for all edges in current detail level so no need to compute expensive |p2| over and over again.
goto #2 until you have enough dense triangulation
so 2 for loops and few dynamic lists (points,triangles,circumference_edges,and some temps if not doing this inplace). Also this method does not need goniometrics at all (can be modified to generate the triangle fan too).
Here similar stuff:
sphere triangulation using similar technique

Drawing a star on a sphere

I am trying to draw a star on a sphere. To determine the points belonging to the star I need to count the number of halfspaces that the points on the sphere belong to out of the 5 halfspaces defined by alternating points of the regular pentagon drawn on the x-y plane. My problem is determining the equations of those planes. I know 2 points, 2 alternating points of hexagons: (v0, v2), (v0, v3), (v1, v3), (v1, v4), (v2, v4). Assuming all planes are parallel to the z-axis, it seems to me intuitively this is enough info to find the plane equation, but my math is a little rusty and cannot do it. Appreciate any leads of how to calculate the equations or pointing out the flaw in my assumption...
If you're going to draw a star an a sphere, it will probably look better if the arcs are geodesics. That makes it easier for you, since the planes that define those arcs (by intersecting the sphere) will then all pass through the sphere's center.
Finding those planes is easy, too. You just take the cross product of the vectors from the center to any two points to find the normal. If the sphere's center is at (0,0,0), you don't need anything else.

Covering any surface with helix-shaped curves

I have a question about the feasability of an idea.
I have a surface (which can be parametrized or defined implicitly by an equation F(x,y,z) = 0) and I want to draw some helix that fit the surface, litterally helix on the surface.
What would be the process to achieve that ?
I have a basic idea ,which is inspired from ray marching methods, : I have my surface (which have a finite area) then I 'draw' a big helix curve around it and I decrease the radius of the helix. If the helix intersect the surface then I save that point, and finally I would obtain the set of points that draw an helix on the surface...
Feel free to ask me questions about the problem.
Thank you for your attention.
thomas
There are different ways to understand "drawing a helix curve" on a surface. By the way, I am not sure that you use the proper term, as a helix is a spring-like curve and is not flat at all. I will instead assume some planar curve described by an implicit C(x,y)=0 or parametric x=Xc(t),y=Yc(t) representation.
One approach is by using a (u,v) parameterization of the surface, as used in texture mapping, x=Xs(u,v), y=Ys(u, v), z=Zs(u, v). For example, for a sphere (u,v) could correspond to the angle coordinates in the spherical system. In this case, it suffices to map x=u, y=v and there will be a direct correspondence between the points of the curve and the points of the surface.
Another approach is by "extruding" the curve in the z direction to form a cylindric surface, and intersect the cylindre with the surface. In this case, you form the system
S(x, y, z)= 0
C(x, y)= 0
where z is free, and solve for (x, y) as a function of z. (You can also use the parametric equations, there are different combinations.) In fact, you perform a parallel projection of the curve.
Instead of a cylindre, you can also think of a conic surface, by choosing a vertex point, say the origin, and considering the points (zx, zy, az) where a is an "aperture" coefficient and z is free. This idea is vey close to your "radius decrease" method and corresponds to a central projection.

Calculate equidistant point with minimal distance from 3 points in N-dimensional space

I'm trying to code the Ritter's bounding sphere algorithm in arbitrary dimensions, and I'm stuck on the part of creating a sphere which would have 3 given points on it's edge, or in other words, a sphere which would be defined by 3 points in N-dimensional space.
That sphere's center would be the minimal-distance equidistant point from the (defining) 3 points.
I know how to solve it in 2-D (circumcenter of a triangle defined by 3 points), and I've seen some vector calculations for 3D, but I don't know what the best method would be for N-D, and if it's even possible.
(I'd also appreciate any other advice about the smallest bounding sphere calculations in ND, in case I'm going in the wrong direction.)
so if I get it right:
Wanted point p is intersection between 3 hyper-spheres of the same radius r where the centers of hyper-spheres are your points p0,p1,p2 and radius r is minimum of all possible solutions. In n-D is arbitrary point defined as (x1,x2,x3,...xn)
so solve following equations:
|p-p0|=r
|p-p1|=r
|p-p2|=r
where p,r are unknowns and p0,p1,p2 are knowns. This lead to 3*n equations and n+1 unknowns. So get all the nonzero r solutions and select the minimal. To compute correctly chose some non trivial equation (0=r) from each sphere to form system of n+1 =equations and n+1 unknowns and solve it.
[notes]
To ease up the processing you can have your equations in this form:
(p.xi-p0.xi)^2=r^2
and use sqrt(r^2) only after solution is found (ignoring negative radius).
there is also another simpler approach possible:
You can compute the plane in which the points p0,p1,p2 lies so just find u,v coordinates of these points inside this plane. Then solve your problem in 2D on (u,v) coordinates and after that convert found solution form (u,v) back to your n-D space.
n=(p1-p0)x(p2-p0); // x is cross product
u=(p1-p0); u/=|u|;
v=u x n; v/=|v|; // x is cross product
if memory of mine serves me well then conversion n-D -> u,v is done like this:
P0=(0,0);
P1=(|p1-p0|,0);
P2=(dot(p2-p0,u),dot(p2-p0,v));
where P0,P1,P2 are 2D points in (u,v) coordinate system of the plane corresponding to points p0,p1,p2 in n-D space.
conversion back is done like this:
p=(P.u*u)+(P.v*v);
My Bounding Sphere algorithm only calculates a near-optimal sphere, in 3 dimensions.
Fischer has an exact, minimal bounding hyper-sphere (N dimensions.) See his paper: http://people.inf.ethz.ch/gaertner/texts/own_work/seb.pdf.
His (C++/Java)code: https://github.com/hbf/miniball.
Jack Ritter
jack#houseofwords.com

How to tell if two rings (circles in 3d) are linked

I have two rings in 3 space each represented by a normal vector, center coordinate, and a radius.
How can I determine if the rings are linked. I.e. a point on one circle lies in the other disk.
This will be implemented in a tight loop so I am concerned about performance. I feel like there should be a closed form solution. So far I've only thought iterative solutions.
Any help?
Outline of the algorithm:
Handle the cases where the planes of the circles are parallel or concurrent.
Find the line of intersection of the planes of the circles.
Find the intersections of the circles with this line.
All the circle intersections with the line are on both planes. We can now do distance checks to see if the circles are linked.
Details:
I'll assume that the circles C1 and C2 are given by a center point (p1, p2), unit normal axis vector (n1, n2) and radii (r1, r2).
If n1 == k n2 for some scalar k, then the planes are parallel or concurrent. If they're concurrent this becomes the trivial 2d problem: check whether dist(p1, p2) < r1+r2.
Otherwise, the planes intersect at a line L. If the circles are linked, then they must both intersect L since linking implies that they mutually pass through each other's plane of definition. This gives you your first trivial rejection test.
L is given by a point q and a vector v. Finding v is easy: It's just the cross product of n1 and n2. q is a little trickier, but we can choose a point of nearest approach of the lines
l1(s) = p1 + s (v X n1)
l2(t) = p2 + t (v X n2)
These lines are perpendicular to v, n1 and n2, and are on the planes of C1 and C2. Their points of nearest approach must be on L.
You can refer to this post to see how to find the points of nearest approach.
Finally, the only way the circles can intersect is if they both have points on L. If they do, then consider the intersection points of C1 and L as they relate to C2. The circles are linked if there are two intersection points q11 and q12 of C1 and L and exactly one of them are inside of C2. Since L is on the plane of C2, this becomes a planar point-in-circle test:
IF dist(p1, q11) < r1 THEN
linked = (dist(p1, q12) > r1)
ELSE
linked = (dist(p1, q11) < r1)
ENDIF
Of course this pseudo-code is a little sloppy about handling the case that the circles actually intersect, but how that should be handled depends on your application.
A straightforward solution that is relatively easy to code: compute the line of intersection of the two planes and rotate and translate everything (in my case the six points defining the two circles) together so that the line becomes the Z axis (x=y=0). Then the planes can be rotated separately around Z so that the first circle, C1, lies on the XZ plane and C2 lies on the YZ plane. Now the centers and radii are easy to find (in my situation I don't initially have them). These rotations do not change the link/no link property and the link or lack of it can be easily determined from the order of the four intersections of the circles with the Z axis. (If either of the circles does not intersect x=y=0, there is no link.) (I may have confused the axes but I think this will work.)
Thank you.
Is this the 3D circle-disk intersection problem? Or, is it the circle-circle intersection problem?
If it's the former, there is a fast, closed form algorithm. First, weed out the circles-too-distant case: dist(CIR1.c, CIR2.c) > CIR1.r + CIR2.r
Handle the edge case: coplanar circles.
Extrude the disk into its plane, then intersect the circle with this plane. If there are 1 or 2 intersection points, test to see if they meet pointInDisk(p, CIR) logic. Report out any surviving intersection points.
A computational geometry textbook might have a good solution!
But I don't have a computation geometry textbook handy at the moment. If I were going to roll my own right now, based on my own (very limited) intuition, I think I'd start with 3d axis-aligned bounding boxes.
e.g., create an "just inside the circle" bounding box, as well as a "just outside the circle" bounding box. I believe it's trivial to figure out if two axis-aligned boxes overlap (section 2.1 of a homework assignment I once did talks about a related problem in the 2D situation --- finding the nearest rectangle to a point: http://juliusdavies.ca/uvic/report.html ).
I suspect the following assertions would hold (but I could be wrong):
If the inner-boxes overlap, then the rings are definitely connected. (I now think this is wrong...)
If the outer-boxes DO NOT overlap, then they are definitely not connected --- I am very confident this assertion holds! :-) :-)
If the outer-boxes overlap, but the inner-boxes do not, then they might be connected.
That's where I'd start, if I were rolling my own.
Conclusion: uhhh, I hope you have better luck with the other answers. :-)

Resources