What is cron job's server usage? - linux

Alright,
I'm thinking of creating a webscript that depends on cronjob.. I'm wondering, would it ever make any server damages for the amount of crontabs ?
lets say i have 50 crontabs to be done everyday, would it ever hurt the server ?
if no, what's the max amount of crontabs to be added in a linux server # 512MB memory

When you create a new job the cron daemon call the function job_add (job.c), this function alloc the memory to the job and add it to the tail of the job list.
The job is allocated on the heap, so theorically you're limited just by the RAM installed on your machine.
Some notes from the CRON code:
The job structure:
typedef struct _job {
struct _job *next;
entry *e;
user *u;
} job;
Each user crontab entry is defined by:
typedef struct _entry {
struct _entry *next;
uid_t uid;
gid_t gid;
char **envp;
char *cmd;
bitstr_t bit_decl(minute, MINUTE_COUNT);
bitstr_t bit_decl(hour, HOUR_COUNT);
bitstr_t bit_decl(dom, DOM_COUNT);
bitstr_t bit_decl(month, MONTH_COUNT);
bitstr_t bit_decl(dow, DOW_COUNT);
int flags;
#define DOM_STAR 0x01
#define DOW_STAR 0x02
#define WHEN_REBOOT 0x04
} entry;
And the user struct:
typedef struct _user {
struct _user *next, *prev; /* links */
char *name;
time_t mtime; /* last modtime of crontab */
entry *crontab; /* this person's crontab */
} user;
You can see that this structs does not cosume a lot of memory.
If you're curious about how the implementation of cron work, you can see the code here : cron ubuntu source.

Related

Where the structure "struct page" is stored on the linux kernel?

I learned that linux kernel manages the memory and the unit for allocate/deallocate the memory is 4KB, which is the page size. And I know that this pages are handled by struct page.
I got a actual code here.
struct page {
unsigned long flags; /* Atomic flags, some possibly
* updated asynchronously */
/*
* Five words (20/40 bytes) are available in this union.
* WARNING: bit 0 of the first word is used for PageTail(). That
* means the other users of this union MUST NOT use the bit to
* avoid collision and false-positive PageTail().
*/
union {
struct { /* Page cache and anonymous pages */
/**
* #lru: Pageout list, eg. active_list protected by
* pgdat->lru_lock. Sometimes used as a generic list
* by the page owner.
*/
struct list_head lru;
/* See page-flags.h for PAGE_MAPPING_FLAGS */
struct address_space *mapping;
pgoff_t index; /* Our offset within mapping. */
/**
* #private: Mapping-private opaque data.
* Usually used for buffer_heads if PagePrivate.
* Used for swp_entry_t if PageSwapCache.
* Indicates order in the buddy system if PageBuddy.
*/
unsigned long private;
};
struct { /* page_pool used by netstack */
/**
* #dma_addr: might require a 64-bit value even on
* 32-bit architectures.
*/
dma_addr_t dma_addr;
};
struct { /* slab, slob and slub */
union {
struct list_head slab_list;
struct { /* Partial pages */
struct page *next;
#ifdef CONFIG_64BIT
int pages; /* Nr of pages left */
int pobjects; /* Approximate count */
#else
short int pages;
short int pobjects;
#endif
};
};
struct kmem_cache *slab_cache; /* not slob */
/* Double-word boundary */
void *freelist; /* first free object */
union {
void *s_mem; /* slab: first object */
unsigned long counters; /* SLUB */
struct { /* SLUB */
unsigned inuse:16;
unsigned objects:15;
unsigned frozen:1;
};
};
};
struct { /* Tail pages of compound page */
unsigned long compound_head; /* Bit zero is set */
/* First tail page only */
unsigned char compound_dtor;
unsigned char compound_order;
atomic_t compound_mapcount;
};
struct { /* Second tail page of compound page */
unsigned long _compound_pad_1; /* compound_head */
atomic_t hpage_pinned_refcount;
/* For both global and memcg */
struct list_head deferred_list;
};
struct { /* Page table pages */
unsigned long _pt_pad_1; /* compound_head */
pgtable_t pmd_huge_pte; /* protected by page->ptl */
unsigned long _pt_pad_2; /* mapping */
union {
struct mm_struct *pt_mm; /* x86 pgds only */
atomic_t pt_frag_refcount; /* powerpc */
};
#if ALLOC_SPLIT_PTLOCKS
spinlock_t *ptl;
#else
spinlock_t ptl;
#endif
};
struct { /* ZONE_DEVICE pages */
/** #pgmap: Points to the hosting device page map. */
struct dev_pagemap *pgmap;
void *zone_device_data;
/*
* ZONE_DEVICE private pages are counted as being
* mapped so the next 3 words hold the mapping, index,
* and private fields from the source anonymous or
* page cache page while the page is migrated to device
* private memory.
* ZONE_DEVICE MEMORY_DEVICE_FS_DAX pages also
* use the mapping, index, and private fields when
* pmem backed DAX files are mapped.
*/
};
/** #rcu_head: You can use this to free a page by RCU. */
struct rcu_head rcu_head;
};
union { /* This union is 4 bytes in size. */
/*
* If the page can be mapped to userspace, encodes the number
* of times this page is referenced by a page table.
*/
atomic_t _mapcount;
/*
* If the page is neither PageSlab nor mappable to userspace,
* the value stored here may help determine what this page
* is used for. See page-flags.h for a list of page types
* which are currently stored here.
*/
unsigned int page_type;
unsigned int active; /* SLAB */
int units; /* SLOB */
};
/* Usage count. *DO NOT USE DIRECTLY*. See page_ref.h */
atomic_t _refcount;
#ifdef CONFIG_MEMCG
struct mem_cgroup *mem_cgroup;
#endif
/*
* On machines where all RAM is mapped into kernel address space,
* we can simply calculate the virtual address. On machines with
* highmem some memory is mapped into kernel virtual memory
* dynamically, so we need a place to store that address.
* Note that this field could be 16 bits on x86 ... ;)
*
* Architectures with slow multiplication can define
* WANT_PAGE_VIRTUAL in asm/page.h
*/
#if defined(WANT_PAGE_VIRTUAL)
void *virtual; /* Kernel virtual address (NULL if
not kmapped, ie. highmem) */
#endif /* WANT_PAGE_VIRTUAL */
#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
int _last_cpupid;
#endif
} _struct_page_alignment;
And I have no idea where the linux kernel stores this huge(?) structure.
There are a lot of pages handled in the linux kernel and that means that we have a lot of this struct page structures. Where can it be stored on the memory?
Also I have no idea what the union up there is up for.
First, there are several memory models like FMM, SMP, and NUMA. The knowledge about virtual memory, page and page tables, sturct of kernel and user space memory may not write here because there are too much more than the limitation of the answer's length and I think you can learn it from any books.
Let's use NUMA as an example. In NUMA, every CPU will have a node : struct pglist_data *node_data, and this struct has many Zones like ZONE_DMA, ZONE_DMA32, ZONE_NORMAL, ZONE_HIGHMEM, ZONE_MOVALBE, every Zone has many struct free_area, and this struct includes a list of struct page.
Why we need to use page? It is because our physical memory is limit, so we create virtual memory. And then we need a mechanism to load virtual memory to physical memory to run the task(process or thread). So we use page as the meta entry, and use some models like NUMA to control those pages and page tables.
When we need to allocate some memory, we will use buddy system and slab/slub allocator to allocate memory pages and add them to a zone that can use. When the physical memory loads too much pages, it will use get_page_from_freelist() or kswapd to swap some out.
Auctally, memory and addresses space is a essential part of Linux kernel. I suggest you to read some books like CSAPP to get a relatively deep understand of OS, and then reading Linux kernel source codes to dive into them.
I have the same question as you recently.
Where is the struct page in Linux kernel?
And I think I can give you some helpful informations. Every node stores pages into pg_data_t's node_mem_map, and there is a global variable mem_map, which is pointing to Node 0's page array.
You can find more details from Professional Linux Kernel Architecture. In chapter 3, the section is "Creating Data Structures for Each Node".
If you want to know exact place where it is stored, this article might give you the answer.
It says that they are "usually stored at the beginning of ZONE_NORMAL".

Linux process data structure

According to GNU website the linux shell uses the following data structure for a process :
typedef struct process
{
struct process *next; /* next process in pipeline */
char **argv; /* for exec */
pid_t pid; /* process ID */
char completed; /* true if process has completed */
char stopped; /* true if process has stopped */
int status; /* reported status value */
} process;
Why can't the shell use the task_struct data structure for a process when it is already present in the kernel. Why use a separate data structure ?

"current" in Linux kernel code

As I was going through the below chunk of Linux char driver code, I found the structure pointer current in printk.
I want to know what structure the current is pointing to and its complete elements.
What purpose does this structure serve?
ssize_t sleepy_read (struct file *filp, char __user *buf, size_t count, loff_t *pos)
{
printk(KERN_DEBUG "process %i (%s) going to sleep\n",
current->pid, current->comm);
wait_event_interruptible(wq, flag != 0);
flag = 0;
printk(KERN_DEBUG "awoken %i (%s)\n", current->pid, current->comm);
return 0;
}
It is a pointer to the current process ie, the process which has issued the system call.
From the docs:
The Current Process
Although kernel modules don't execute sequentially as applications do,
most actions performed by the kernel are related to a specific
process. Kernel code can know the current process driving it by
accessing the global item current, a pointer to struct task_struct,
which as of version 2.4 of the kernel is declared in
<asm/current.h>, included by <linux/sched.h>. The current pointer
refers to the user process currently executing. During the execution
of a system call, such as open or read, the current process is the one
that invoked the call. Kernel code can use process-specific
information by using current, if it needs to do so. An example of this
technique is presented in "Access Control on a Device File", in
Chapter 5, "Enhanced Char Driver Operations".
Actually, current is not properly a global variable any more, like it
was in the first Linux kernels. The developers optimized access to the
structure describing the current process by hiding it in the stack
page. You can look at the details of current in <asm/current.h>. While
the code you'll look at might seem hairy, we must keep in mind that
Linux is an SMP-compliant system, and a global variable simply won't
work when you are dealing with multiple CPUs. The details of the
implementation remain hidden to other kernel subsystems though, and a
device driver can just include and refer to the
current process.
From a module's point of view, current is just like the external
reference printk. A module can refer to current wherever it sees fit.
For example, the following statement prints the process ID and the
command name of the current process by accessing certain fields in
struct task_struct:
printk("The process is \"%s\" (pid %i)\n",
current->comm, current->pid);
The command name stored in current->comm is the base name of the
program file that is being executed by the current process.
Here is the complete structure the "current" is pointing to
task_struct
Each task_struct data structure describes a process or task in the system.
struct task_struct {
/* these are hardcoded - don't touch */
volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
long counter;
long priority;
unsigned long signal;
unsigned long blocked; /* bitmap of masked signals */
unsigned long flags; /* per process flags, defined below */
int errno;
long debugreg[8]; /* Hardware debugging registers */
struct exec_domain *exec_domain;
/* various fields */
struct linux_binfmt *binfmt;
struct task_struct *next_task, *prev_task;
struct task_struct *next_run, *prev_run;
unsigned long saved_kernel_stack;
unsigned long kernel_stack_page;
int exit_code, exit_signal;
/* ??? */
unsigned long personality;
int dumpable:1;
int did_exec:1;
int pid;
int pgrp;
int tty_old_pgrp;
int session;
/* boolean value for session group leader */
int leader;
int groups[NGROUPS];
/*
* pointers to (original) parent process, youngest child, younger sibling,
* older sibling, respectively. (p->father can be replaced with
* p->p_pptr->pid)
*/
struct task_struct *p_opptr, *p_pptr, *p_cptr,
*p_ysptr, *p_osptr;
struct wait_queue *wait_chldexit;
unsigned short uid,euid,suid,fsuid;
unsigned short gid,egid,sgid,fsgid;
unsigned long timeout, policy, rt_priority;
unsigned long it_real_value, it_prof_value, it_virt_value;
unsigned long it_real_incr, it_prof_incr, it_virt_incr;
struct timer_list real_timer;
long utime, stime, cutime, cstime, start_time;
/* mm fault and swap info: this can arguably be seen as either
mm-specific or thread-specific */
unsigned long min_flt, maj_flt, nswap, cmin_flt, cmaj_flt, cnswap;
int swappable:1;
unsigned long swap_address;
unsigned long old_maj_flt; /* old value of maj_flt */
unsigned long dec_flt; /* page fault count of the last time */
unsigned long swap_cnt; /* number of pages to swap on next pass */
/* limits */
struct rlimit rlim[RLIM_NLIMITS];
unsigned short used_math;
char comm[16];
/* file system info */
int link_count;
struct tty_struct *tty; /* NULL if no tty */
/* ipc stuff */
struct sem_undo *semundo;
struct sem_queue *semsleeping;
/* ldt for this task - used by Wine. If NULL, default_ldt is used */
struct desc_struct *ldt;
/* tss for this task */
struct thread_struct tss;
/* filesystem information */
struct fs_struct *fs;
/* open file information */
struct files_struct *files;
/* memory management info */
struct mm_struct *mm;
/* signal handlers */
struct signal_struct *sig;
#ifdef __SMP__
int processor;
int last_processor;
int lock_depth; /* Lock depth.
We can context switch in and out
of holding a syscall kernel lock... */
#endif
};

how list_head structure used for scheduling in kernel

I have read a few things from which I can make out that instead of scheduling a task with a scheduling policy it is better that we schedule an entity with a scheduling policy. The advantages being that you can schedule many things with the same scheduling policy. So there are two entities defined for two scheduling policies(CFS and RT) namely as sched_entity and sched_rt_entity. The code for CFS entity is (from v3.5.4)
struct sched_entity {
struct load_weight load; /* for load-balancing */
struct rb_node run_node;
struct list_head group_node;
unsigned int on_rq;
u64 exec_start;
u64 sum_exec_runtime;
u64 vruntime;
u64 prev_sum_exec_runtime;
u64 nr_migrations;
#ifdef CONFIG_SCHEDSTATS
struct sched_statistics statistics;
#endif
#ifdef CONFIG_FAIR_GROUP_SCHED
struct sched_entity *parent;
/* rq on which this entity is (to be) queued: */
struct cfs_rq *cfs_rq;
/* rq "owned" by this entity/group: */
struct cfs_rq *my_q;
#endif
};
and for RT(real time) entity is
struct sched_rt_entity {
struct list_head run_list;
unsigned long timeout;
unsigned int time_slice;
struct sched_rt_entity *back;
#ifdef CONFIG_RT_GROUP_SCHED
struct sched_rt_entity *parent;
/* rq on which this entity is (to be) queued: */
struct rt_rq *rt_rq;
/* rq "owned" by this entity/group: */
struct rt_rq *my_q;
#endif
};
Both of these uses the list_head structures defined in ./include/linux/types.h
struct list_head {
struct list_head *next, *prev;
};
I honestly do not understand how any such thing is going to be scheduled. Can anyone explain how this is working.
P.S.:
Moreover, I am really having a hard time understanding the meaning of the names of data members. Can anyone suggest a good read for understanding kernel structures so that I can figure out these things a bit easily. Most of the time I spend is wasted in searching what a data member could mean.
Scheduling entities were introduced in order to implement group scheduling, so that CFS (or RT scheduler) will provide fair CPU time for individual tasks but also fair CPU time to groups of tasks. Scheduling entity may be either a task or group of tasks.
struct list_head is just Linux way to implement linked list. In the code you posted fields group_node and run_list allow to create lists of struct sched_entity and struct sched_rt_entity. More information can be found here.
Using these list_heads scheduling entities are stored in certain scheduler related data structures, for example cfs_rq.cfs_tasks if an entity is a task enqueued using account_entity_enqueue().
Always up to date documentation of Linux kernel can be found within its sources. In this case you should check this directory and especially this file which describes CFS. There is also an explanation of task groups.
EDIT: task_struct contains a field se of type struct sched_entity. Then, having an address to a sched_entity object using container_of macro it is possible to retrieve an address to the task_struct object, see task_of(). (address of sched_entity object - offset of se in task_struct = address of task_struct object) This is quite common trick used also in the implementation of lists I mentioned earlier in this answer.

What is the "current" in Linux kernel source?

I'm studying about Linux kernel and I have a problem.
I see many Linux kernel source files have current->files. So what is the current?
struct file *fget(unsigned int fd)
{
struct file *file;
struct files_struct *files = current->files;
rcu_read_lock();
file = fcheck_files(files, fd);
if (file) {
/* File object ref couldn't be taken */
if (file->f_mode & FMODE_PATH ||
!atomic_long_inc_not_zero(&file->f_count))
file = NULL;
}
rcu_read_unlock();
return file;
}
It's a pointer to the current process (i.e. the process that issued the system call).
On x86, it's defined in arch/x86/include/asm/current.h (similar files for other archs).
#ifndef _ASM_X86_CURRENT_H
#define _ASM_X86_CURRENT_H
#include <linux/compiler.h>
#include <asm/percpu.h>
#ifndef __ASSEMBLY__
struct task_struct;
DECLARE_PER_CPU(struct task_struct *, current_task);
static __always_inline struct task_struct *get_current(void)
{
return percpu_read_stable(current_task);
}
#define current get_current()
#endif /* __ASSEMBLY__ */
#endif /* _ASM_X86_CURRENT_H */
More information in Linux Device Drivers chapter 2:
The current pointer refers to the user process currently executing. During the execution of a system call, such as open or read, the current process is the one that invoked the call. Kernel code can use process-specific information by using current, if it needs to do so. [...]
Current is a global variable of type struct task_struct. You can find it's definition at [1].
Files is a struct files_struct and it contains information of the files used by the current process.
[1] http://students.mimuw.edu.pl/SO/LabLinux/PROCESY/ZRODLA/sched.h.html
this is ARM64 definition. in arch/arm64/include/asm/current.h, https://elixir.bootlin.com/linux/latest/source/arch/arm64/include/asm/current.h
struct task_struct;
/*
* We don't use read_sysreg() as we want the compiler to cache the value where
* possible.
*/
static __always_inline struct task_struct *get_current(void)
{
unsigned long sp_el0;
asm ("mrs %0, sp_el0" : "=r" (sp_el0));
return (struct task_struct *)sp_el0;
}
#define current get_current()
which just use the sp_el0 register. As the pointer to current process's task_struct

Resources