Background: I am using node.js and express to create an API. I have implemented OAuth in my API server in a standard consumer/user key/secret fashion (the same way Twitter, Facebook, etc. do). I expect 3rd parties to connect to my API, again in the same manner as these common APIs.
Normally, a client would connect with an application token/secret (eg, you create a Facebook app as a Facebook developer and these are given to you). However there are times when the client cannot provide a secret for the application because the code is implemented in an insecure fashion. Specifically, I am referring to Javascript libraries. Eg, developers do not want to expose their application secret in Javascript code because it is plaintext and could be read by malicious users.
I've noticed that Facebook avoided this problem. The developer needs to provide only an application token (not secret) to the Javascript library. I do not understand how to provide a similar option for my API without fundamentally making my library insecure. Namely, if requests are being made by a Javascript client library to an API without providing a well-secured token/secret, how are those requests authenticated by the OAuth API?
Intellectually, the best solution I could think of would to have some sort of token handoff between the Javascript client library and the API server via a HTTPS connection, in order to return a secret for the library to use. I'm not quite sure how I'd secure this handoff to prevent spoofs, though.
In most cases it is better to follow the standards than to implement some custom way. OAuth2 specifies 4 methods in the latest draft (28) to do the Authorization Grant flow. The implicit flow is the one you saw on Facebook.
As the standard says for that:
When issuing an access token during the implicit grant flow, the authorization server does not authenticate the client. In some cases, the client identity can be verified via the redirection URI used to deliver the access token to the client. The access token may be exposed to the resource owner or other applications with access to the resource owner's user-agent.
Implicit grants improve the responsiveness and efficiency of some clients (such as a client implemented as an in-browser application) since it reduces the number of round trips required to obtain an access token. However, this convenience should be weighed against the security implications of using implicit grants, especially when the authorization code grant type is available.
it has some security drawbacks.
But as far as I can see, the other methods don't work for you, as they are exposing secrets to either the client (third-party website owner) or the resource owner (user), so you should stay with this.
Related
Xero Accounting API uses OAuth 2.0 but they seem to have intentionally omitted client_credentials grant type in order to sell what they call Custom Connections.
If we "don't want to pay for a Custom Connection, then you can still make use of Web or PKCE code flow for building machine to machine integrations but you'll need to request your tokens and handle authorisation outside off your application".
So I wonder if there's already a tried and tested way of managing the tokens especially in NodeJS or PHP in GCM or AWS cloud environments that I can use to establish a secure M2M communication after the initial OAuth user login.
Please bear with me while I explain my problem and the solutions/guides I have found.
Description: In my company, we have one product that have multiple modules. Each module is its separate backend and frontend. We have JavaEE/JakartaEE with JAX-RS as our backend stack and React as for our frontend. Until now we are using Basic Authentication using the JavaEE Security via Sessions, but because the product is evolving and we need mobile clients and allow third parties to access the data, we have decided to integrate OAuth2/OpenID Connect into our application.
Since there are multiple implementations out there that provide OAuth2 functionality, we are currently looking into a few available options. (Keycloak and ORY Hydra for example). The decision which we will choose depends on how much work we want to do change the existing structure of the application how we handle the users in the database. But regardless of which implementation we opt for, we have similar questions going forward.
Questions
How do the react applications handle login process and token storage?
Every documentation says: If the user is not logged in s/he is redirected to the login page. Where after login and consent he is redirected back to the app (After completing the oauth2 workflow obviously) with the Access/ID Token for the resource server and/or Refresh Token for refreshing the Access/ID Token.
Now here is what is not clear to me:
Since this is our own React app, we do not want to show the consent screen, like in apps from Microsoft/Google etc you do not see any. I guess this is possible by setting a value in the request itself, or skipping the consent screen based on the client id but I just want to make sure.
Next is where do I store the Access and Refresh Token? Access Token should be sent as the Bearer token with each request. So it can be stored in local storage because they are short lived, but the refresh token should be stored securely. Like in a secure http cookie?. If that is the case, then the server has to set it. If this is correct is this how the flow will look like?
Our React App (Not logged In) --> Login Page (Another React Page) --> User Enters Credentials --> Java Backend --> Authenticates the user --> Initiate the OAuth2 process --> Get the Access and Refresh Tokens --> Set them as secure Cookies --> Return the authenticated response to frontend with the cookies --> Login Page redirects to the previous page --> User continues with the app
This does not feel correct. How would PKCE help in this case?
Assuming what I wrote above is correct, I would need different login flows when the users logs in from our own app or from a third party app. That can however be determined by checking client ids or disabling password flow for third party clients.
The same would be applicable then for the refresh token flow too. Because for my own app I have to set the cookies, for third parties this has to be directly from the OAuth Server
Resources I have read/researched:
https://gist.github.com/mziwisky/10079157
How does OAuth work?
Edit: Adding more links I have read
What is the purpose of implicit grant
Best practices for session management
RESTful Authentication
And of course various writings and examples from Keycloak and ORY Hydra also.
I am currently trying both Keycloak and ORY Hydra figuring out which fits our needs better.
Thank you all in advance!
You don't have to show the consent screen. Here's an example of a React app authenticating using the Authorization Code Grant: https://fusionauth.io/blog/2020/03/10/securely-implement-oauth-in-react (full disclosure, this is on my employer's site but will work with any OAuth2 compliant identity server).
The short answer is that it's best for you to avoid the implicit grant, and have the access and refresh tokens stored in some middleware, not the browser. The example in the link uses a 100 line express server and stores those tokens in the session.
I wrote a bit about PKCE. Excerpt:
The Proof Key for Code Exchange (PKCE) RFC was published in 2015 and extends the Authorization Code grant to protect from an attack if part of the authorization flow happens over a non TLS connection. For example, between components of a native application. This attack could also happen if TLS has a vulnerability or if router firmware has been compromised and is spoofing DNS or downgrading from TLS to HTTP. PKCE requires an additional one-time code to be sent to the OAuth server. This is used to validate the request has not been intercepted or modified.
Here's a breakdown of the various OAuth options you have (again, this is on my employer's site but will work with any OAuth2 compliant identity server): https://fusionauth.io/learn/expert-advice/authentication/login-authentication-workflows You can allow different flows for different clients. For example, you could use the Authorization Code Grant for third parties and the Resource Owner Password Credentials grant (which essentially is username and password) for your own applications.
I'm not sure I answered all of your questions, but I hope that some of this is helpful.
The OAuth 2.0 Security Best Current Practice should be consulted. Even though it is still a "Internet Draft" it is mature and has been implemented by several vender implementations.
In general the OAuth 2.0 Authorization Code with PKCE Flow is the recommendation regardless of the use of Bearer tokens or JWT.
You should also consider reading about WebAuthn (Where there is not password)
I am developing a SPA application in angular and I have a lot of confusion about the correct way to implement authentication and authorization.
First of all, the application is a first-party app, which means that I am developing both the authorization server and resource servers.
The users that logs in the application must have full access to their resources on the platform.
So, I am doing it using OAuth2.0 and I have a couple of doubts about the domain of the protocol as well as security concerns.
First question:
The first question is if OAuth should be actually used to authorize first party applications. From my understanding this is a delegation protocol used to grant a third-party application controlled access to the user's resources on the platform, upon user consent. How does this fit in the context of a first-party app? In that case the app should get an access token with a scope that allows full access, right?
Second question:
Since this is a Single Page Application I couldn't store a secret on client side. So I am opting for using the authorization code grant with PKCE which would seem to be appropriate to manage this scenario. In this case I wouldn't ask for a refresh token but I would only retrieve the access token and using silent check to refresh it. I do not want to have refresh token insecurely stored on the browser. Is this PKCE really secure? The secret is generated dynamically but a attacker could eventually create a system using the same public client id and managing the PKCE properly, and finally get an access token that, in my case, gives full access to the users resources.
I could in the future allow controlled access to my app's resources to third party app, that's also one of the reason why I stick with OAuth.
The first question is if OAuth should be actually used to authorize first party applications. From my understanding this is a delegation protocol used to grant a third-party application controlled access to the user's resources on the platform, upon user consent. How does this fit in the context of a first-party app? In that case the app should get an access token with a scope that allows full access, right?
Yes, this makes sense to me. We skip the 'grant permissions' step for our own apps.
Is this PKCE really secure?
Yes, even without PKCE, authorization_code is pretty secure. Adding PKCE solves a a few potential security issues, but I would be somewhat inclined to call them edge cases. It is definitely right now the recommended choice.
The PKCE rfc has more information about the motivations behind PKCE:
https://www.rfc-editor.org/rfc/rfc7636#section-1
I actually came here looking for the answer to Question 1. My take is that in situations where we have no third party apps requiring access to our APIs we do not need OAuth. If we still need to use OAuth, then we can use Resource Owner Password Flow for first party apps. I have not seen any convincing answer anywhere confirming or rejecting this opinion but this is purely based on my understanding of OAuth.
Now, I am mainly writing this to answer Question 2. PKCE protocol is secure and attacker would not get token in this scenario. The reason is that the Authorization Server uses pre-registered "Redirect Uri" to send the token to. To be precise, the Auth Server would simply ask the browser to redirect user to "Redirect Uri appended with Access Token". Browsers do not allow javascript interception of Redirection requests. Therefore, an attacker would not be able to get hold of the token and the user will be redirected from attacker's site to yours at the end.
I have poured over the OAuth2 docs and seen how the Facebook Javascript SDK uses Implicit Grant.
I am building a ReactJs application, which communicates with a PHP-Symfony API.
What I want to do is offer the "Login with Facebook" option on the frontend.
What I need on my PHP server is the Facebook user id and email and other data of the user so I can initially create a user record for them in my DB and then on returning visit, use the auth token to get that info again on the server and use it to match it to existing records and log the user in.
We have done this previously using the Authorization Code Grant method to redirect the frontend to our server, then to facebook and then back to us with the auth code. We then use that on the server with our Secret Key to get the Access Token and get the user info directly from Facebook to our server and then authenticate the user.
The redirection is a bit of a pain for a single page application.
Facebook's Javascript SDK handles a lot of that automatically, but uses Implicit Grant, returning an Access Token directly to the frontend.
What I want to know is, can I just send that Access Token to my server to do the same type of authentication that I did before? Or is that a massive security hole that I am opening up?
Comparing the two, the Auth Code from the Authorization Code Grant flow also goes via the frontend, but very quickly, not directly to JavaScript and is much shorter lived. So it feels much more secure.
If intercepted in time and with matching state, it could be used to authenticate someone on our server, but not access someone's Facebook data directly.
Reusing the frontend Access Token from the Implicit Grant flow feels like it is open to messing with, but I can't put my finger on the exact scenario that would make it more vulnerable to attack. The token would potentially give people access to not only authenticating on our server but also to accessing people's Facebook info.
So this is ultimately a question of best practice and security.
We think that we should be able to implement our own popout window that does the Authorization Code Grant style flow and retrieves our server cookie which can then be used by the page that spawned it, but it is going to be tricky and most of the work seems to be done for the Implicit Grant method, if it is safe to use as we intend to use it.
Best Practices AND According to the RFC 6749
However, this convenience should be weighed against the security
implications of using implicit grants, such as those described in
Sections 10.3 and 10.16, especially when the authorization code
grant type is available.
I am in the process of designing a RESTful API/web-service with the expectation that it will eventually be able to be consumed by several client web applications/consumers. As part of this service, I would like to have the first consumers be web browsers, in which the API/service provides a website that can access the API.
Is there a feasible/secure way in which OAuth 1.0a may be used for a Consumer (in this case, website) that is ultimately provided by the "same" service as the API itself?
Mainly, how can I ensure that this consumer has a valid secret Consume Key if it gets sent over the wire? Is there a way to "pre-register" an instance of the webpage, with its own Consumer Key, prior to sending?
(I plan on using HTTPS with this design.)
Any direct answers are appreciated, and any references to other online material that may answer my question(s) is also appreciated.
Thanks.
During further research, I have found that one of the goals of OAuth 2.0 is to factor in a use-case that handles browser-based web applications.
In Oauth 2.0, browser-based applications are considered "public clients;" the specification has an Implicit Grant workflow to handle clients of this type. Public clients are clients that cannot ensure that a client identifier or client secret be kept secret, therefore, the Implicit Grant flow does not explicitly rely on the requirement that it have a client secret. Rather, the client pre-registers a redirect-URI with the authorization server prior to gaining access tokens.
So, in short, there isn't a good way to pass a client secret "over the wire" in a browser-based application. (Or at least not a good way that I have discovered.) Rather the OAuth 2.0 Implicit Grant workflow can be used instead.