Does Haskell have return type overloading? - haskell

Based on what I've read about Haskell, and the experimentation I've done with GHC, it seems like Haskell has return type overloading (aka ad hoc polymorphism). One example of this is the fromInteger function which can give you a Double or an Integer depending on where the result is used. For example:
fd :: Double -> String
fd x = "Double"
fi :: Integer -> String
fi x = "Integer"
fd (fromInteger 5) -- returns "Double"
fi (fromInteger 5) -- returns "Integer"
A Gentle Introduction to Haskell seems to agree with this when it says:
The kind of polymorphism that we have talked about so far is commonly called parametric polymorphism. There is another kind called ad hoc polymorphism, better known as overloading. Here are some examples of ad hoc polymorphism:
The literals 1, 2, etc. are often used to represent both fixed and arbitrary precision integers.
If the numeric literals are considered to be an example of ad hoc polymorphism (aka overloading), then it seems that the same is true for the result of functions like fromInteger.
And in fact, I've found some answers to other questions on Stack Overflow that suggest that Haskell has overloading by return type.
However, at least one Haskell programmer has told me that this isn't return type overloading, and is instead an example of "parametric polymorphism, where the parameter is bound by a universal quantifier".
I think what he's getting at is that fromInteger is returning a value from every instance of Num (sort of a nondeterministic type).
That seems like a reasonable interpretation, but as far as I can tell, Haskell never lets us look at more than one of these instance values (thanks in part to the Monomorphism restriction). It also seems like the actual instance who's value we look at can be determined statically. Because of all of this, it seems reasonable to say that in the expression fd (fromInteger 5) the subexpression fromInteger 5 is of type Double, while in the expression fi (fromInteger 5) the subexpression fromInteger 5 is of type Integer.
So, does Haskell have return type overloading?
If not, please provide an example of one of the following:
valid Haskell code that would have different behavior if Haskell had return type overloading
valid Haskell code that would be invalid if Haskell had return type overloading
invalid Haskell code that would be valid if Haskell had return type overloading

Well, one way to look at it is that Haskell translates the return type polymorphism that you're thinking of into parametric polymorphism, using something called the dictionary-passing translation for type classes. (Though this is not the only way to implement type classes or reason about them; it's just the most popular.)
Basically, fromInteger has this type in Haskell:
fromInteger :: Num a => Integer -> a
That might be translated internally into something like this:
fromInteger# :: NumDictionary# a -> Integer -> a
fromInteger# NumDictionary# { fromInteger = method } x = method x
data NumDictionary# a = NumDictionary# { ...
, fromInteger :: Integer -> a
, ... }
So for each concrete type T with a Num instance, there's a NumDictionary# T value that contains a function fromInteger :: Integer -> T, and all code that uses the Num type class is translated into code that takes a dictionary as the argument.

The seminal paper on Haskell-style typeclasses is called "How to make ad-hoc polymorphism less ad hoc". So, the answer to your question is a qualified "yes" -- depending on just how ad hoc you require your return-type overloading to be...
In other words: there is no question that ad hoc polymorphism is relevant to typeclasses, since that was a motivating example for inventing them. But whether you think the result still qualifies as "return-type overloading" depends on the fiddly details of your favored definition.

I'd like to address one small part of your question:
It also seems like the actual instance who's value we look at can be determined statically.
This isn't really accurate. Consider the following wacky data type:
data PerfectlyBalancedTree a
= Leaf a
| Branch (PerfectlyBalancedTree (a,a))
deriving (Eq, Ord, Show, Read)
Let's gawk at that type for a second first before we move on to the good bits. Here are a few typical values of the type PerfectlyBalancedTree Integer:
Leaf 0
Branch (Leaf (0, 0))
Branch (Branch (Leaf ((0,0),(0,0))))
Branch (Branch (Branch (Leaf (((0,0),(0,0)),((0,0),(0,0))))))
In fact, you can visualize any value of this type as being an initial sequence of n Branch tags followed by a "we're finally done, thank goodness" Leaf tag followed by a 2^n-tuple of the contained type. Cool.
Now, we're going to write a function to parse a slightly more convenient representation for these. Here's a couple example invocations:
*Main> :t fromString
fromString :: String -> PerfectlyBalancedTree Integer
*Main> fromString "0"
Leaf 0
*Main> fromString "b(42,69)"
Branch (Leaf (42,69))
*Main> fromString "bbb(((0,0),(0,0)),((0,0),(0,0)))"
Branch (Branch (Branch (Leaf (((0,0),(0,0)),((0,0),(0,0))))))
Along the way, it will be convenient to write a slightly more polymorphic function. Here it is:
fromString' :: Read a => String -> PerfectlyBalancedTree a
fromString' ('b':rest) = Branch (fromString' rest)
fromString' leaf = Leaf (read leaf)
Now our real function is just the same thing with a different type signature:
fromString :: String -> PerfectlyBalancedTree Integer
fromString = fromString'
But wait a second... what just happened here? I slipped something by you big time! Why didn't we just write this directly?
fromStringNoGood :: String -> PerfectlyBalancedTree Integer
fromStringNoGood ('b':rest) = Branch (fromStringNoGood rest)
fromStringNoGood leaf = Leaf (read leaf)
The reason is that in the recursive call, fromStringNoGood has a different type. It's not being called on to return a PerfectlyBalancedTree Integer, it's being called on to return a PerfectlyBalancedTree (Integer, Integer). We could write ourselves such a function...
fromStringStillNoGood :: String -> PerfectlyBalancedTree Integer
fromStringStillNoGood ('b':rest) = Branch (helper rest)
fromStringStillNoGood leaf = Leaf (read leaf)
helper :: String -> PerfectlyBalancedTree (Integer, Integer)
helper ('b':rest) = Branch ({- ... what goes here, now? -})
helper leaf = Leaf (read leaf)
... but this way lies an infinite regress into writing deeperly and deeperly nested types.
The problem is that, even though we're interested in a monomorphic top-level function, we nevertheless cannot determine statically what type read is being called at in the polymorphic function it uses! The data we're passed determines what type of tuple read should return: more bs in the String means a deeper-nested tuple.

You're right: Haskell does have overloading and it provides it through its type-class mechanism.
Consider the following signatures:
f :: [a] -> a
g :: Num a => [a] -> a
The first signature tells you that given a list of elements of any type a, f will produce a value of type a. This means that the implementation of f cannot make any assumptions about the type a and what operations it admits. This is an example of parametric polymorphism. A moment's reflection reveals that there are actually very little options for implementing f: the only thing you can do is select an element from the provided list. Conceptually, there is a single generic implementation of f that works for all types a.
The second signatures tells you that given a list of elements of some type a that belongs to the type class Num, g will produce a value of that type a. This means that the implementation of g can consume, produce, and manipulate values of type a using all operations that come with the type class Num. For example, g can add or multiply the elements of the list, select the minimum of the list, return a lifted constant, ... This is an example of overloading, which is typically taken to be a form of ad-hoc polymorphism (the other main form being coercion). Conceptually, there is a different implementation for g for all types a in Num.

It has return type overloading. For a good example see the Read function. It has the type Read a => String -> a. It can read and return anything that implements the read type class.

Related

Clarification of Terms around Haskell Type system

Type system in haskell seem to be very Important and I wanted to clarify some terms revolving around haskell type system.
Some type classes
Functor
Applicative
Monad
After using :info I found that Functor is a type class, Applicative is a type class with => (deriving?) Functor and Monad deriving Applicative type class.
I've read that Maybe is a Monad, does that mean Maybe is also Applicative and Functor?
-> operator
When i define a type
data Maybe = Just a | Nothing
and check :t Just I get Just :: a -> Maybe a. How to read this -> operator?
It confuses me with the function where a -> b means it evaluates a to b (sort of returns a maybe) – I tend to think lhs to rhs association but it turns when defining types?
The term type is used in ambiguous ways, Type, Type Class, Type Constructor, Concrete Type etc... I would like to know what they mean to be exact
Indeed the word “type” is used in somewhat ambiguous ways.
The perhaps most practical way to look at it is that a type is just a set of values. For example, Bool is the finite set containing the values True and False.Mathematically, there are subtle differences between the concepts of set and type, but they aren't really important for a programmer to worry about. But you should in general consider the sets to be infinite, for example Integer contains arbitrarily big numbers.
The most obvious way to define a type is with a data declaration, which in the simplest case just lists all the values:
data Colour = Red | Green | Blue
There we have a type which, as a set, contains three values.
Concrete type is basically what we say to make it clear that we mean the above: a particular type that corresponds to a set of values. Bool is a concrete type, that can easily be understood as a data definition, but also String, Maybe Integer and Double -> IO String are concrete types, though they don't correspond to any single data declaration.
What a concrete type can't have is type variables†, nor can it be an incompletely applied type constructor. For example, Maybe is not a concrete type.
So what is a type constructor? It's the type-level analogue to value constructors. What we mean mathematically by “constructor” in Haskell is an injective function, i.e. a function f where if you're given f(x) you can clearly identify what was x. Furthermore, any different constructors are assumed to have disjoint ranges, which means you can also identify f.‡
Just is an example of a value constructor, but it complicates the discussion that it also has a type parameter. Let's consider a simplified version:
data MaybeInt = JustI Int | NothingI
Now we have
JustI :: Int -> MaybeInt
That's how JustI is a function. Like any function of the same signature, it can be applied to argument values of the right type, like, you can write JustI 5.What it means for this function to be injective is that I can define a variable, say,
quoxy :: MaybeInt
quoxy = JustI 9328
and then I can pattern match with the JustI constructor:
> case quoxy of { JustI n -> print n }
9328
This would not be possible with a general function of the same signature:
foo :: Int -> MaybeInt
foo i = JustI $ negate i
> case quoxy of { foo n -> print n }
<interactive>:5:17: error: Parse error in pattern: foo
Note that constructors can be nullary, in which case the injective property is meaningless because there is no contained data / arguments of the injective function. Nothing and True are examples of nullary constructors.
Type constructors are the same idea as value constructors: type-level functions that can be pattern-matched. Any type-name defined with data is a type constructor, for example Bool, Colour and Maybe are all type constructors. Bool and Colour are nullary, but Maybe is a unary type constructor: it takes a type argument and only the result is then a concrete type.
So unlike value-level functions, type-level functions are kind of by default type constructors. There are also type-level functions that aren't constructors, but they require -XTypeFamilies.
A type class may be understood as a set of types, in the same vein as a type can be seen as a set of values. This is not quite accurate, it's closer to true to say a class is a set of type constructors but again it's not as useful to ponder the mathematical details – better to look at examples.
There are two main differences between type-as-set-of-values and class-as-set-of-types:
How you define the “elements”: when writing a data declaration, you need to immediately describe what values are allowed. By contrast, a class is defined “empty”, and then the instances are defined later on, possibly in a different module.
How the elements are used. A data type basically enumerates all the values so they can be identified again. Classes meanwhile aren't generally concerned with identifying types, rather they specify properties that the element-types fulfill. These properties come in the form of methods of a class. For example, the instances of the Num class are types that have the property that you can add elements together.
You could say, Haskell is statically typed on the value level (fixed sets of values in each type), but duck-typed on the type level (classes just require that somebody somewhere implements the necessary methods).
A simplified version of the Num example:
class Num a where
(+) :: a -> a -> a
instance Num Int where
0 + x = x
x + y = ...
If the + operator weren't already defined in the prelude, you would now be able to use it with Int numbers. Then later on, perhaps in a different module, you could also make it usable with new, custom number types:
data MyNumberType = BinDigits [Bool]
instance Num MyNumberType where
BinDigits [] + BinDigits l = BinDigits l
BinDigits (False:ds) + BinDigits (False:es)
= BinDigits (False : ...)
Unlike Num, the Functor...Monad type classes are not classes of types, but of 1-ary type constructors. I.e. every functor is a type constructor taking one argument to make it a concrete type. For instance, recall that Maybe is a 1-ary type constructor.
class Functor f where
fmap :: (a->b) -> f a -> f b
instance Functor Maybe where
fmap f (Just a) = Just (f a)
fmap _ Nothing = Nothing
As you have concluded yourself, Applicative is a subclass of Functor. D being a subclass of C means basically that D is a subset of the set of type constructors in C. Therefore, yes, if Maybe is an instance of Monad it also is an instance of Functor.
†That's not quite true: if you consider the _universal quantor_ explicitly as part of the type, then a concrete type can contain variables. This is a bit of an advanced subject though.
‡This is not guaranteed to be true if the -XPatternSynonyms extension is used.

How does the :: operator syntax work in the context of bounded typeclass?

I'm learning Haskell and trying to understand the reasoning behind it's syntax design at the same time. Most of the syntax is beautiful.
But since :: normally is like a type annotation, How is it that this works:
Input: minBound::Int
Output: -2147483648
There is no separate operator: :: is a type annotation in that example. Perhaps the best way to understand this is to consider this code:
main = print (f minBound)
f :: Int -> Int
f = id
This also prints -2147483648. The use of minBound is inferred to be an Int because it is the parameter to f. Once the type has been inferred, the value for that type is known.
Now, back to:
main = print (minBound :: Int)
This works in the same way, except that minBound is known to be an Int because of the type annotation, rather than for some more complex reason. The :: isn't some binary operation; it just directs the compiler that the expression minBound has the type Int. Once again, since the type is known, the value can be determined from the type class.
:: still means "has type" in that example.
There are two ways you can use :: to write down type information. Type declarations, and inline type annotations. Presumably you've been used to seeing type declarations, as in:
plusOne :: Integer -> Integer
plusOne = (+1)
Here the plusOne :: Integer -> Integer line is a separate declaration about the identifier plusOne, informing the compiler what its type should be. It is then actually defined on the following line in another declaration.
The other way you can use :: is that you can embed type information in the middle of any expression. Any expression can be followed by :: and then a type, and it means the same thing as the expression on its own except with the additional constraint that it must have the given type. For example:
foo = ('a', 2) :: (Char, Integer)
bar = ('a', 2 :: Integer)
Note that for foo I attached the entire expression, so it is very little different from having used a separate foo :: (Char, Integer) declaration. bar is more interesting, since I gave a type annotation for just the 2 but used that within a larger expression (for the whole pair). 2 :: Integer is still an expression for the value 2; :: is not an operator that takes 2 as input and computes some result. Indeed if the 2 were already used in a context that requires it to be an Integer then the :: Integer annotation changes nothing at all. But because 2 is normally polymorphic in Haskell (it could fit into a context requiring an Integer, or a Double, or a Complex Float) the type annotation pins down that the type of this particular expression is Integer.
The use is that it avoids you having to restructure your code to have a separate declaration for the expression you want to attach a type to. To do that with my simple example would have required something like this:
two :: Integer
two = 2
baz = ('a', two)
Which adds a relatively large amount of extra code just to have something to attach :: Integer to. It also means when you're reading bar, you have to go read a whole separate definition to know what the second element of the pair is, instead of it being clearly stated right there.
So now we can answer your direct question. :: has no special or particular meaning with the Bounded type class or with minBound in particular. However it's useful with minBound (and other type class methods) because the whole point of type classes is to have overloaded names that do different things depending on the type. So selecting the type you want is useful!
minBound :: Int is just an expression using the value of minBound under the constraint that this particular time minBound is used as an Int, and so the value is -2147483648. As opposed to minBound :: Char which is '\NUL', or minBound :: Bool which is False.
None of those options mean anything different from using minBound where there was already some context requiring it to be an Int, or Char, or Bool; it's just a very quick and simple way of adding that context if there isn't one already.
It's worth being clear that both forms of :: are not operators as such. There's nothing terribly wrong with informally using the word operator for it, but be aware that "operator" has a specific meaning in Haskell; it refers to symbolic function names like +, *, &&, etc. Operators are first-class citizens of Haskell: we can bind them to variables1 and pass them around. For example I can do:
(|+|) = (+)
x = 1 |+| 2
But you cannot do this with ::. It is "hard-wired" into the language, just as the = symbol used for introducing definitions is, or the module Main ( main ) where syntax for module headers. As such there are lots of things that are true about Haskell operators that are not true about ::, so you need to be careful not to confuse yourself or others when you use the word "operator" informally to include ::.
1 Actually an operator is just a particular kind of variable name that is applied by writing it between two arguments instead of before them. The same function can be bound to operator and ordinary variables, even at the same time.
Just to add another example, with Monads you can play a little like this:
import Control.Monad
anyMonad :: (Monad m) => Int -> m Int
anyMonad x = (pure x) >>= (\x -> pure (x*x)) >>= (\x -> pure (x+2))
$> anyMonad 4 :: [Int]
=> [18]
$> anyMonad 4 :: Either a Int
=> Right 18
$> anyMonad 4 :: Maybe Int
=> Just 18
it's a generic example telling you that the functionality may change with the type, another example:

How does return statement work in Haskell? [duplicate]

This question already has answers here:
What's so special about 'return' keyword
(3 answers)
Closed 5 years ago.
Consider these functions
f1 :: Maybe Int
f1 = return 1
f2 :: [Int]
f2 = return 1
Both have the same statement return 1. But the results are different. f1 gives value Just 1 and f2 gives value [1]
Looks like Haskell invokes two different versions of return based on return type. I like to know more about this kind of function invocation. Is there a name for this feature in programming languages?
This is a long meandering answer!
As you've probably seen from the comments and Thomas's excellent (but very technical) answer You've asked a very hard question. Well done!
Rather than try to explain the technical answer I've tried to give you a broad overview of what Haskell does behind the scenes without diving into technical detail. Hopefully it will help you to get a big picture view of what's going on.
return is an example of type inference.
Most modern languages have some notion of polymorphism. For example var x = 1 + 1 will set x equal to 2. In a statically typed language 2 will usually be an int. If you say var y = 1.0 + 1.0 then y will be a float. The operator + (which is just a function with a special syntax)
Most imperative languages, especially object oriented languages, can only do type inference one way. Every variable has a fixed type. When you call a function it looks at the types of the argument and chooses a version of that function that fits the types (or complains if it can't find one).
When you assign the result of a function to a variable the variable already has a type and if it doesn't agree with the type of the return value you get an error.
So in an imperative language the "flow" of type deduction follows time in your program Deduce the type of a variable, do something with it and deduce the type of the result. In a dynamically typed language (such as Python or javascript) the type of a variable is not assigned until the value of the variable is computed (which is why there don't seem to be types). In a statically typed language the types are worked out ahead of time (by the compiler) but the logic is the same. The compiler works out what the types of variables are going to be, but it does so by following the logic of the program in the same way as the program runs.
In Haskell the type inference also follows the logic of the program. Being Haskell it does so in a very mathematically pure way (called System F). The language of types (that is the rules by which types are deduced) are similar to Haskell itself.
Now remember Haskell is a lazy language. It doesn't work out the value of anything until it needs it. That's why it makes sense in Haskell to have infinite data structures. It never occurs to Haskell that a data structure is infinite because it doesn't bother to work it out until it needs to.
Now all that lazy magic happens at the type level too. In the same way that Haskell doesn't work out what the value of an expression is until it really needs to, Haskell doesn't work out what the type of an expression is until it really needs to.
Consider this function
func (x : y : rest) = (x,y) : func rest
func _ = []
If you ask Haskell for the type of this function it has a look at the definition, sees [] and : and deduces that it's working with lists. But it never needs to look at the types of x and y, it just knows that they have to be the same because they end up in the same list. So it deduces the type of the function as [a] -> [a] where a is a type that it hasn't bothered to work out yet.
So far no magic. But it's useful to notice the difference between this idea and how it would be done in an OO language. Haskell doesn't convert the arguments to Object, do it's thing and then convert back. Haskell just hasn't been asked explicitly what the type of the list is. So it doesn't care.
Now try typing the following into ghci
maxBound - length ""
maxBound : "Hello"
Now what just happened !? minBound bust be a Char because I put it on the front of a string and it must be an integer because I added it to 0 and got a number. Plus the two values are clearly very different.
So what is the type of minBound? Let's ask ghci!
:type minBound
minBound :: Bounded a => a
AAargh! what does that mean? Basically it means that it hasn't bothered to work out exactly what a is, but is has to be Bounded if you type :info Bounded you get three useful lines
class Bounded a where
minBound :: a
maxBound :: a
and a lot of less useful lines
So if a is Bounded there are values minBound and maxBound of type a.
In fact under the hood Bounded is just a value, it's "type" is a record with fields minBound and maxBound. Because it's a value Haskell doesn't look at it until it really needs to.
So I appear to have meandered somewhere in the region of the answer to your question. Before we move onto return (which you may have noticed from the comments is a wonderfully complex beast.) let's look at read.
ghci again
read "42" + 7
read "'H'" : "ello"
length (read "[1,2,3]")
and hopefully you won't be too surprised to find that there are definitions
read :: Read a => String -> a
class Read where
read :: String -> a
so Read a is just a record containing a single value which is a function String -> a. Its very tempting to assume that there is one read function which looks at a string, works out what type is contained in the string and returns that type. But it does the opposite. It completely ignores the string until it's needed. When the value is needed, Haskell first works out what type it's expecting, once it's done that it goes and gets the appropriate version of the read function and combines it with the string.
now consider something slightly more complex
readList :: Read a => [String] -> a
readList strs = map read strs
under the hood readList actually takes two arguments
readList' (Read a) -> [String] -> [a]
readList' {read = f} strs = map f strs
Again as Haskell is lazy it only bothers looking at the arguments when it's needs to find out the return value, at that point it knows what a is, so the compiler can go and fine the right version of Read. Until then it doesn't care.
Hopefully that's given you a bit of an idea of what's happening and why Haskell can "overload" on the return type. But it's important to remember it's not overloading in the conventional sense. Every function has only one definition. It's just that one of the arguments is a bag of functions. read_str doesn't ever know what types it's dealing with. It just knows it gets a function String -> a and some Strings, to do the application it just passes the arguments to map. map in turn doesn't even know it gets strings. When you get deeper into Haskell it becomes very important that functions don't know very much about the types they're dealing with.
Now let's look at return.
Remember how I said that the type system in Haskell was very similar to Haskell itself. Remember that in Haskell functions are just ordinary values.
Does this mean I can have a type that takes a type as an argument and returns another type? Of course it does!
You've seen some type functions Maybe takes a type a and returns another type which can either be Just a or Nothing. [] takes a type a and returns a list of as. Type functions in Haskell are usually containers. For example I could define a type function BinaryTree which stores a load of a's in a tree like structure. There are of course lots of much stranger ones.
So, if these type functions are similar to ordinary types I can have a typeclass that contains type functions. One such typeclass is Monad
class Monad m where
return a -> m a
(>>=) m a (a -> m b) -> m b
so here m is some type function. If I want to define Monad for m I need to define return and the scary looking operator below it (which is called bind)
As others have pointed out the return is a really misleading name for a fairly boring function. The team that designed Haskell have since realised their mistake and they're genuinely sorry about it. return is just an ordinary function that takes an argument and returns a Monad with that type in it. (You never asked what a Monad actually is so I'm not going to tell you)
Let's define Monad for m = Maybe!
First I need to define return. What should return x be? Remember I'm only allowed to define the function once, so I can't look at x because I don't know what type it is. I could always return Nothing, but that seems a waste of a perfectly good function. Let's define return x = Just x because that's literally the only other thing I can do.
What about the scary bind thing? what can we say about x >>= f? well x is a Maybe a of some unknown type a and f is a function that takes an a and returns a Maybe b. Somehow I need to combine these to get a Maybe b`
So I need to define Nothing >== f. I can't call f because it needs an argument of type a and I don't have a value of type a I don't even know what 'a' is. I've only got one choice which is to define
Nothing >== f = Nothing
What about Just x >>= f? Well I know x is of type a and f takes a as an argument, so I can set y = f a and deduce that y is of type b. Now I need to make a Maybe b and I've got a b so ...
Just x >>= f = Just (f x)
So I've got a Monad! what if m is List? well I can follow a similar sort of logic and define
return x = [x]
[] >>= f = []
(x : xs) >>= a = f x ++ (xs >>= f)
Hooray another Monad! It's a nice exercise to go through the steps and convince yourself that there's no other sensible way of defining this.
So what happens when I call return 1?
Nothing!
Haskell's Lazy remember. The thunk return 1 (technical term) just sits there until someone needs the value. As soon as Haskell needs the value it know what type the value should be. In particular it can deduce that m is List. Now that it knows that Haskell can find the instance of Monad for List. As soon as it does that it has access to the correct version of return.
So finally Haskell is ready To call return, which in this case returns [1]!
The return function is from the Monad class:
class Applicative m => Monad (m :: * -> *) where
...
return :: a -> m a
So return takes any value of type a and results in a value of type m a. The monad, m, as you've observed is polymorphic using the Haskell type class Monad for ad hoc polymorphism.
At this point you probably realize return is not an good, intuitive, name. It's not even a built in function or a statement like in many other languages. In fact a better-named and identically-operating function exists - pure. In almost all cases return = pure.
That is, the function return is the same as the function pure (from the Applicative class) - I often think to myself "this monadic value is purely the underlying a" and I try to use pure instead of return if there isn't already a convention in the codebase.
You can use return (or pure) for any type that is a class of Monad. This includes the Maybe monad to get a value of type Maybe a:
instance Monad Maybe where
...
return = pure -- which is from Applicative
...
instance Applicative Maybe where
pure = Just
Or for the list monad to get a value of [a]:
instance Applicative [] where
{-# INLINE pure #-}
pure x = [x]
Or, as a more complex example, Aeson's parse monad to get a value of type Parser a:
instance Applicative Parser where
pure a = Parser $ \_path _kf ks -> ks a

Practical applications of Rank 2 polymorphism?

I'm covering polymorphism and I'm trying to see the practical uses of such a feature.
My basic understanding of Rank 2 is:
type MyType = ∀ a. a -> a
subFunction :: a -> a
subFunction el = el
mainFunction :: MyType -> Int
mainFunction func = func 3
I understand that this is allowing the user to use a polymorphic function (subFunction) inside mainFunction and strictly specify it's output (Int). This seems very similar to GADT's:
data Example a where
ExampleInt :: Int -> Example Int
ExampleBool :: Bool -> Example Bool
1) Given the above, is my understanding of Rank 2 polymorphism correct?
2) What are the general situations where Rank 2 polymorphism can be used, as opposed to GADT's, for example?
If you pass a polymorphic function as and argument to a Rank2-polymorphic function, you're essentially passing not just one function but a whole family of functions – for all possible types that fulfill the constraints.
Typically, those forall quantifiers come with a class constraint. For example, I might wish to do number arithmetic with two different types simultaneously (for comparing precision or whatever).
data FloatCompare = FloatCompare {
singlePrecision :: Float
, doublePrecision :: Double
}
Now I might want to modify those numbers through some maths operation. Something like
modifyFloat :: (Num -> Num) -> FloatCompare -> FloatCompare
But Num is not a type, only a type class. I could of course pass a function that would modify any particular number type, but I couldn't use that to modify both a Float and a Double value, at least not without some ugly (and possibly lossy) converting back and forth.
Solution: Rank-2 polymorphism!
modifyFloat :: (∀ n . Num n => n -> n) -> FloatCompare -> FloatCompare
mofidyFloat f (FloatCompare single double)
= FloatCompare (f single) (f double)
The best single example of how this is useful in practice are probably lenses. A lens is a “smart accessor function” to a field in some larger data structure. It allows you to access fields, update them, gather results... while at the same time composing in a very simple way. How it works: Rank2-polymorphism; every lens is polymorphic, with the different instantiations corresponding to the “getter” / “setter” aspects, respectively.
The go-to example of an application of rank-2 types is runST as Benjamin Hodgson mentioned in the comments. This is a rather good example and there are a variety of examples using the same trick. For example, branding to maintain abstract data type invariants across multiple types, avoiding confusion of differentials in ad, a region-based version of ST.
But I'd actually like to talk about how Haskell programmers are implicitly using rank-2 types all the time. Every type class whose methods have universally quantified types desugars to a dictionary with a field with a rank-2 type. In practice, this is virtually always a higher-kinded type class* like Functor or Monad. I'll use a simplified version of Alternative as an example. The class declaration is:
class Alternative f where
empty :: f a
(<|>) :: f a -> f a -> f a
The dictionary representing this class would be:
data AlternativeDict f = AlternativeDict {
empty :: forall a. f a,
(<|>) :: forall a. f a -> f a -> f a }
Sometimes such an encoding is nice as it allows one to use different "instances" for the same type, perhaps only locally. For example, Maybe has two obvious instances of Alternative depending on whether Just a <|> Just b is Just a or Just b. Languages without type classes, such as Scala, do indeed use this encoding.
To connect to leftaroundabout's reference to lenses, you can view the hierarchy there as a hierarchy of type classes and the lens combinators as simply tools for explicitly building the relevant type class dictionaries. Of course, the reason it isn't actually a hierarchy of type classes is that we usually will have multiple "instances" for the same type. E.g. _head and _head . _tail are both "instances" of Traversal' s a.
* A higher-kinded type class doesn't necessarily lead to this, and it can happen for a type class of kind *. For example:
-- Higher-kinded but doesn't require universal quantification.
class Sum c where
sum :: c Int -> Int
-- Not higher-kinded but does require universal quantification.
class Length l where
length :: [a] -> l
If you are using modules in Haskell, you are already using Rank-2 types. Theoretically speaking, modules are records with rank-2 type properties.
For example, the Foo module below in Haskell ...
module Foo(id) where
id :: forall a. a -> a
id x = x
import qualified Foo
main = do
putStrLn (Foo.id "hello")
return ()
... can actually be thought as a record as follows:
type FooType = FooType {
id :: forall a. a -> a
}
Foo :: FooType
Foo = Foo {
id = \x -> x
}
P/S (unrelated this question): from a language design perspective, if you are going to support module system, then you might as well support higher-rank types (i.e. allow arbitrary quantification of type variables on any level) to reduce duplication of efforts (i.e. type checking a module should be almost the same as type checking a record with higher rank types).

Functions don't just have types: They ARE Types. And Kinds. And Sorts. Help put a blown mind back together

I was doing my usual "Read a chapter of LYAH before bed" routine, feeling like my brain was expanding with every code sample. At this point I was convinced that I understood the core awesomeness of Haskell, and now just had to understand the standard libraries and type classes so that I could start writing real software.
So I was reading the chapter about applicative functors when all of a sudden the book claimed that functions don't merely have types, they are types, and can be treated as such (For example, by making them instances of type classes). (->) is a type constructor like any other.
My mind was blown yet again, and I immediately jumped out of bed, booted up the computer, went to GHCi and discovered the following:
Prelude> :k (->)
(->) :: ?? -> ? -> *
What on earth does it mean?
If (->) is a type constructor, what are the value constructors? I can take a guess, but would have no idea how define it in traditional data (->) ... = ... | ... | ... format. It's easy enough to do this with any other type constructor: data Either a b = Left a | Right b. I suspect my inability to express it in this form is related to the extremly weird type signature.
What have I just stumbled upon? Higher kinded types have kind signatures like * -> * -> *. Come to think of it... (->) appears in kind signatures too! Does this mean that not only is it a type constructor, but also a kind constructor? Is this related to the question marks in the type signature?
I have read somewhere (wish I could find it again, Google fails me) about being able to extend type systems arbitrarily by going from Values, to Types of Values, to Kinds of Types, to Sorts of Kinds, to something else of Sorts, to something else of something elses, and so on forever. Is this reflected in the kind signature for (->)? Because I've also run into the notion of the Lambda cube and the calculus of constructions without taking the time to really investigate them, and if I remember correctly it is possible to define functions that take types and return types, take values and return values, take types and return values, and take values which return types.
If I had to take a guess at the type signature for a function which takes a value and returns a type, I would probably express it like this:
a -> ?
or possibly
a -> *
Although I see no fundamental immutable reason why the second example couldn't easily be interpreted as a function from a value of type a to a value of type *, where * is just a type synonym for string or something.
The first example better expresses a function whose type transcends a type signature in my mind: "a function which takes a value of type a and returns something which cannot be expressed as a type."
You touch so many interesting points in your question, so I am
afraid this is going to be a long answer :)
Kind of (->)
The kind of (->) is * -> * -> *, if we disregard the boxity GHC
inserts. But there is no circularity going on, the ->s in the
kind of (->) are kind arrows, not function arrows. Indeed, to
distinguish them kind arrows could be written as (=>), and then
the kind of (->) is * => * => *.
We can regard (->) as a type constructor, or maybe rather a type
operator. Similarly, (=>) could be seen as a kind operator, and
as you suggest in your question we need to go one 'level' up. We
return to this later in the section Beyond Kinds, but first:
How the situation looks in a dependently typed language
You ask how the type signature would look for a function that takes a
value and returns a type. This is impossible to do in Haskell:
functions cannot return types! You can simulate this behaviour using
type classes and type families, but let us for illustration change
language to the dependently typed language
Agda. This is a
language with similar syntax as Haskell where juggling types together
with values is second nature.
To have something to work with, we define a data type of natural
numbers, for convenience in unary representation as in
Peano Arithmetic.
Data types are written in
GADT style:
data Nat : Set where
Zero : Nat
Succ : Nat -> Nat
Set is equivalent to * in Haskell, the "type" of all (small) types,
such as Natural numbers. This tells us that the type of Nat is
Set, whereas in Haskell, Nat would not have a type, it would have
a kind, namely *. In Agda there are no kinds, but everything has
a type.
We can now write a function that takes a value and returns a type.
Below is a the function which takes a natural number n and a type,
and makes iterates the List constructor n applied to this
type. (In Agda, [a] is usually written List a)
listOfLists : Nat -> Set -> Set
listOfLists Zero a = a
listOfLists (Succ n) a = List (listOfLists n a)
Some examples:
listOfLists Zero Bool = Bool
listOfLists (Succ Zero) Bool = List Bool
listOfLists (Succ (Succ Zero)) Bool = List (List Bool)
We can now make a map function that operates on listsOfLists.
We need to take a natural number that is the number of iterations
of the list constructor. The base cases are when the number is
Zero, then listOfList is just the identity and we apply the function.
The other is the empty list, and the empty list is returned.
The step case is a bit move involving: we apply mapN to the head
of the list, but this has one layer less of nesting, and mapN
to the rest of the list.
mapN : {a b : Set} -> (a -> b) -> (n : Nat) ->
listOfLists n a -> listOfLists n b
mapN f Zero x = f x
mapN f (Succ n) [] = []
mapN f (Succ n) (x :: xs) = mapN f n x :: mapN f (Succ n) xs
In the type of mapN, the Nat argument is named n, so the rest of
the type can depend on it. So this is an example of a type that
depends on a value.
As a side note, there are also two other named variables here,
namely the first arguments, a and b, of type Set. Type
variables are implicitly universally quantified in Haskell, but
here we need to spell them out, and specify their type, namely
Set. The brackets are there to make them invisible in the
definition, as they are always inferable from the other arguments.
Set is abstract
You ask what the constructors of (->) are. One thing to point out
is that Set (as well as * in Haskell) is abstract: you cannot
pattern match on it. So this is illegal Agda:
cheating : Set -> Bool
cheating Nat = True
cheating _ = False
Again, you can simulate pattern matching on types constructors in
Haskell using type families, one canoical example is given on
Brent Yorgey's blog.
Can we define -> in the Agda? Since we can return types from
functions, we can define an own version of -> as follows:
_=>_ : Set -> Set -> Set
a => b = a -> b
(infix operators are written _=>_ rather than (=>)) This
definition has very little content, and is very similar to doing a
type synonym in Haskell:
type Fun a b = a -> b
Beyond kinds: Turtles all the way down
As promised above, everything in Agda has a type, but then
the type of _=>_ must have a type! This touches your point
about sorts, which is, so to speak, one layer above Set (the kinds).
In Agda this is called Set1:
FunType : Set1
FunType = Set -> Set -> Set
And in fact, there is a whole hierarchy of them! Set is the type of
"small" types: data types in haskell. But then we have Set1,
Set2, Set3, and so on. Set1 is the type of types which mentions
Set. This hierarchy is to avoid inconsistencies such as Girard's
paradox.
As noticed in your question, -> is used for types and kinds in
Haskell, and the same notation is used for function space at all
levels in Agda. This must be regarded as a built in type operator,
and the constructors are lambda abstraction (or function
definitions). This hierarchy of types is similar to the setting in
System F omega, and more
information can be found in the later chapters of
Pierce's Types and Programming Languages.
Pure type systems
In Agda, types can depend on values, and functions can return types,
as illustrated above, and we also had an hierarchy of
types. Systematic investigation of different systems of the lambda
calculi is investigated in more detail in Pure Type Systems. A good
reference is
Lambda Calculi with Types by Barendregt,
where PTS are introduced on page 96, and many examples on page 99 and onwards.
You can also read more about the lambda cube there.
Firstly, the ?? -> ? -> * kind is a GHC-specific extension. The ? and ?? are just there to deal with unboxed types, which behave differently from just * (which has to be boxed, as far as I know). So ?? can be any normal type or an unboxed type (e.g. Int#); ? can be either of those or an unboxed tuple. There is more information here: Haskell Weird Kinds: Kind of (->) is ?? -> ? -> *
I think a function can't return an unboxed type because functions are lazy. Since a lazy value is either a value or a thunk, it has to be boxed. Boxed just means it is a pointer rather than just a value: it's like Integer() vs int in Java.
Since you are probably not going to be using unboxed types in LYAH-level code, you can imagine that the kind of -> is just * -> * -> *.
Since the ? and ?? are basically just more general version of *, they do not have anything to do with sorts or anything like that.
However, since -> is just a type constructor, you can actually partially apply it; for example, (->) e is an instance of Functor and Monad. Figuring out how to write these instances is a good mind-stretching exercise.
As far as value constructors go, they would have to just be lambdas (\ x ->) or function declarations. Since functions are so fundamental to the language, they get their own syntax.

Resources