Socket.io and Load Balancer - node.js

I'm using Socket.io and Node.js and have two instances behind a Stingray load balancer.
The load balancer is setup using Generic Streaming and for the most part, seems to be working fine. However, I am noticing some sporadic behavior.
Basically, there are two instances that an individual may be connected to, if one instance emits to all sockets, the other instance won't see or get those emits.
Does that sound accurate? Would anyone know how to ensure that emits done by either server are sent to clients connected to any server?
Thanks!
Dave

I came across a similar problem when developing Mote.io and decided to go with a hosted solution instead of building a load balancer. Dealing with this problem is pretty difficult as you need to sync data across servers or load balance your clients to the same instance to make sure they get all the same messages.
Socket.io won't help much specifically. You would need to implement redis, some other data sync or load balancing app.
PubNub will take care of this as well. The backend is responsible for syncing messages, load balancing, etc at an abstract level so all you do is supply a channel name and PubNub will ensure that all clients in that channel get the message.
Real-time Chat Apps in 10 Lines of Code
Enter Chat and press enter
<div><input id=input placeholder=you-chat-here /></div>
Chat Output
<div id=box></div>
<script src=http://cdn.pubnub.com/pubnub.min.js></script>
<script>(function(){
var box = PUBNUB.$('box'), input = PUBNUB.$('input'), channel = 'chat';
PUBNUB.subscribe({
channel : channel,
callback : function(text) { box.innerHTML = (''+text).replace( /[<>]/g, '' ) + '<br>' + box.innerHTML }
});
PUBNUB.bind( 'keyup', input, function(e) {
(e.keyCode || e.charCode) === 13 && PUBNUB.publish({
channel : channel, message : input.value, x : (input.value='')
})
} )
})()</script>

Related

Syncing app state with clients using socketio

I'm running a node server with SocketIO which keeps a large object (app state) that is updated regularly.
All clients receive the object after connecting to the server and should keep it updated in real-time using the socket (read-only).
Here's what I have considered:
1:
Emit a delta of changes to the clients using diff after updates
(requires dealing with the reability of delivery and lost updates)
2:
Use the diffsync package (however it allows clients to push changes to the server, but I need updates to be unidirectional, i.e. server-->clients)
I'm confident there should be a readily available solution to deal with this but I was not able to find a definitive answer.
The solution is very easy. You must modify the server so that it accepts updates only from trusted clients.
let Server = require('diffsync').Server;
let receiveEdit = Server.prototype.receiveEdit
Server.receiveEdit = function(connection, editMessage, sendToClient){
if(checkIsTrustedClient(connection))
receiveEdit.call(this, connection, editMessage, sendToClient)
}
but
// TODO: implement backup workflow
// has a low priority since `packets are not lost` - but don't quote me on that :P
console.log('error', 'patch rejected!!', edit.serverVersion, '->',
clientDoc.shadow.serverVersion, ':',
edit.localVersion, '->', clientDoc.shadow.localVersion);
Second option is try find another solution based on jsondiffpatch

Meteor MongoDB subscription delivering data in 10 second intervals instead of live

I believe this is more of a MongoDB question than a Meteor question, so don't get scared if you know a lot about mongo but nothing about meteor.
Running Meteor in development mode, but connecting it to an external Mongo instance instead of using Meteor's bundled one, results in the same problem. This leads me to believe this is a Mongo problem, not a Meteor problem.
The actual problem
I have a meteor project which continuosly gets data added to the database, and displays them live in the application. It works perfectly in development mode, but has strange behaviour when built and deployed to production. It works as follows:
A tiny script running separately collects broadcast UDP packages and shoves them into a mongo collection
The Meteor application then publishes a subset of this collection so the client can use it
The client subscribes and live-updates its view
The problem here is that the subscription appears to only get data about every 10 seconds, while these UDP packages arrive and gets shoved into the database several times per second. This makes the application behave weird
It is most noticeable on the collection of UDP messages, but not limited to it. It happens with every collection which is subscribed to, even those not populated by the external script
Querying the database directly, either through the mongo shell or through the application, shows that the documents are indeed added and updated as they are supposed to. The publication just fails to notice and appears to default to querying on a 10 second interval
Meteor uses oplog tailing on the MongoDB to find out when documents are added/updated/removed and update the publications based on this
Anyone with a bit more Mongo experience than me who might have a clue about what the problem is?
For reference, this is the dead simple publication function
/**
* Publishes a custom part of the collection. See {#link https://docs.meteor.com/api/collections.html#Mongo-Collection-find} for args
*
* #returns {Mongo.Cursor} A cursor to the collection
*
* #private
*/
function custom(selector = {}, options = {}) {
return udps.find(selector, options);
}
and the code subscribing to it:
Tracker.autorun(() => {
// Params for the subscription
const selector = {
"receivedOn.port": port
};
const options = {
limit,
sort: {"receivedOn.date": -1},
fields: {
"receivedOn.port": 1,
"receivedOn.date": 1
}
};
// Make the subscription
const subscription = Meteor.subscribe("udps", selector, options);
// Get the messages
const messages = udps.find(selector, options).fetch();
doStuffWith(messages); // Not actual code. Just for demonstration
});
Versions:
Development:
node 8.9.3
mongo 3.2.15
Production:
node 8.6.0
mongo 3.4.10
Meteor use two modes of operation to provide real time on top of mongodb that doesn’t have any built-in real time features. poll-and-diff and oplog-tailing
1 - Oplog-tailing
It works by reading the mongo database’s replication log that it uses to synchronize secondary databases (the ‘oplog’). This allows Meteor to deliver realtime updates across multiple hosts and scale horizontally.
It's more complicated, and provides real-time updates across multiple servers.
2 - Poll and diff
The poll-and-diff driver works by repeatedly running your query (polling) and computing the difference between new and old results (diffing). The server will re-run the query every time another client on the same server does a write that could affect the results. It will also re-run periodically to pick up changes from other servers or external processes modifying the database. Thus poll-and-diff can deliver realtime results for clients connected to the same server, but it introduces noticeable lag for external writes.
(the default is 10 seconds, and this is what you are experiencing , see attached image also ).
This may or may not be detrimental to the application UX, depending on the application (eg, bad for chat, fine for todos).
This approach is simple and and delivers easy to understand scaling characteristics. However, it does not scale well with lots of users and lots of data. Because each change causes all results to be refetched, CPU time and network bandwidth scale O(N²) with users. Meteor automatically de-duplicates identical queries, though, so if each user does the same query the results can be shared.
You can tune poll-and-diff by changing values of pollingIntervalMs and pollingThrottleMs.
You have to use disableOplog: true option to opt-out of oplog tailing on a per query basis.
Meteor.publish("udpsPub", function (selector) {
return udps.find(selector, {
disableOplog: true,
pollingThrottleMs: 10000,
pollingIntervalMs: 10000
});
});
Additional links:
https://medium.baqend.com/real-time-databases-explained-why-meteor-rethinkdb-parse-and-firebase-dont-scale-822ff87d2f87
https://blog.meteor.com/tuning-meteor-mongo-livedata-for-scalability-13fe9deb8908
How to use pollingThrottle and pollingInterval?
It's a DDP (Websocket ) heartbeat configuration.
Meteor real time communication and live updates is performed using DDP ( JSON based protocol which Meteor had implemented on top of SockJS ).
Client and server where it can change data and react to its changes.
DDP (Websocket) protocol implements so called PING/PONG messages (Heartbeats) to keep Websockets alive. The server sends a PING message to the client through the Websocket, which then replies with PONG.
By default heartbeatInterval is configure at little more than 17 seconds (17500 milliseconds).
Check here: https://github.com/meteor/meteor/blob/d6f0fdfb35989462dcc66b607aa00579fba387f6/packages/ddp-client/common/livedata_connection.js#L54
You can configure heartbeat time in milliseconds on server by using:
Meteor.server.options.heartbeatInterval = 30000;
Meteor.server.options.heartbeatTimeout = 30000;
Other Link:
https://github.com/meteor/meteor/blob/0963bda60ea5495790f8970cd520314fd9fcee05/packages/ddp/DDP.md#heartbeats

Pusher Account over quota

We use Puhser in our application in order to have real-time updates.
Something very stange happens - while google analytics says that we have around 200 simultaneous connections, Pusher says that we have 1500.
I would like to monitor Pusher connections in real-time but could not find any method to do so. Somebody can help??
Currently there's no way to get realtime stats on the number of connections you currently have open for your app. However, it is something that we're investigating currently.
In terms of why the numbers vary between Pusher and Google Analytics, it's usually down to the fact that Google Analytics uses different methods of tracking whether or not a user is on the site. We're confident that our connection counting is correct, however, that's not to say that there isn't a potentially unexpected reason for your count to be high.
A connection is counted as a WebSocket connection to Pusher. When using the Pusher JavaScript library a new WebSocket connection is created when you create a new Pusher instance.
var pusher = new Pusher('APP_KEY');
Channel subscriptions are created over the existing WebSocket connection (known as multiplexing), and do not count towards your connection quota (there is no limit on the number allowed per connection).
var channel1 = pusher.subscribe('ch1');
var channel2 = pusher.subscribe('ch2');
// All done over as single connection
// more subscriptions
// ...
var channel 100 = pusher.subscribe('ch100');
// Still just a 1 connection
Common reasons why connections are higher than expected
Users open multiple tabs
If a user has multiple tabs open to the same application, multiple instances of Pusher will be created and therefore multiple connections will be used e.g. 2 tabs open will mean 2 connections are established.
Incorrectly coded applications
As mentioned above, a new connection is created every time a new Pusher object is instantiated. It is therefore possible to create many connections in the same page.
Using an older version of one our libraries
Our connection strategies have improved over time, and we recommend that you keep up to date with the latest versions.
Specifically, in newer versions of our JS library, we carry out ping-pong requests between server and client to verify that the client is still around.
Other remedies
While our efforts are always to keep a connection going indefinitely to an application, it is possible to disconnect manually if you feel this works in your scenario. It can be achieved by making a call to Pusher.disconnect(). Below is some example code:
var pusher = new Pusher("APP_KEY");
var timeoutId = null;
function startInactivityCheck() {
timeoutId = window.setTimeout(function(){
pusher.disconnect();
}, 5 * 60 * 1000); // called after 5 minutes
};
// called by something that detects user activity
function userActivityDetected(){
if(timeoutId !== null) {
window.clearTimeout(timeoutId);
}
startInactivityCheck();
};
How this disconnection is transmitted to the user is up to you but you may consider prompting them to let them know that they will not receive any further real-time updates due to a long period of inactivity. If they wish to start receiving real-time updates again they should click a button.

Enabling Data Roaming for one application only on my Firefox-OS Phone

I wanted to use Usage default app to determine how much data my own app send when in roaming mode.
I was very surprised to see that my device sent about 500 Mo. Then I realised that other apps on my phone should have used the network also.
So my question is: how can I enable roaming for just my app and prevent network access for everything else (updates, agenda, mail, ...)?
I run Firefox-OS 2.0 on a ZTE-Open device.
No, this is not possible.
The Data Usage App performs a test like this using the with the Network Stats API:
var end = new Date();
var start = new Date();
// Returns a mozNetworkStats object
var test = navigator.mozNetworkStats.getSamples('mobile', start, end);
console.log(test);
But this test will return a sample of all device connections, not only yours. The simplest solution is to measure the traffic in your Network Monitor.
However, if you want to reduce the amount of mobile traffic for your application, you can restrict all connections to specific connection types (like wifi). Just listen to the typechange event of the NetworkInformation.connection API.
In your WebIDE console (Firefox OS 2.0):
navigator.connection
NetworkInformation { type: "wifi", ontypechange: null }
or
navigator.connection
NetworkInformation { type: "cellular", ontypechange: null }
Please notice, that Firefox OS <=1.5 will never show you a cellular type of connection (it will return none if not wifi).

How can services written in JAVA communicate with zeromq broker written in C

I have written a request-reply broker using zeromq and the C programming language. The broker routes client requests to the appropriate services, and then routes the reply back to the client. The services are written in JAVA.
Can someone please explain how to have the services communicate with the broker. I am sure that this must be a common scenario, but I don't have much experience, so can someone please help me with making my code inter-operable.
Please assume that the services will not be zeromq aware. Is node.js to be used in such a scenario? Will I have to write an http front end?
Here's one way you can do it using async PUSH/PULL sockets. I'm psuedo-coding this, so fill in the blanks yourself:
Assuming the Java services are POJO's residing in their own process, let's say we have a simple service with no zmq dependencies:
public class MyJavaService{
public Object invokeService(String params){
}
}
Now we build a Java delegate layer that pulls in messages from the broker, delegating requests to the Java service methods, and returning the response on a separate socket:
//receive on this
Socket pull = ctx.createSocket(ZMQ.PULL)
pull.connect("tcp://localhost:5555")
//respond on this
Socket push = ctx.createSocket( ZMQ.PUSH)
psuch.connect("tcp://localhost:5556")
while( true){
ZMsg msg = pull.recvMsg( pull)
//assume the msg has 2 frames,
//one for service to invoke,
//the other with arguments
String svcToInvoke = msg.popString()
String svcArgs = msg.popString()
if( "MyJavaService".equals(svcToInvoke)){
ZMsg respMsg = new ZMsg()
respMsg.push( (new MyJavaService()).invokeService( svcArgs))
respMsg.send( push)
}
}
On the broker side, just create the PUSH/PULL sockets to communicate with the Java services layer (I'm not a C++ programmer, so forgive me)
int main () {
zmq::context_t context(1);
zmq::socket_t push(context, ZMQ_PUSH);
push.bind( "tcp://localhost:5555");
// First allow 0MQ to set the identity
zmq::socket_t pull(context, ZMQ_PULL);
pull.bind( "tcp://localhost:5556");
//code here to handle request/response,
//to clients
..
}
Using PUSH/PULL works for this approach, but the ideal approach is to use ROUTER on the server, and DEALER on the client, for full asynchronous communication, example here.
Hope it helps!

Resources