Is my program Turing-complete? - haskell

I spent a week or two programming a simple logic solver. Having built it, I found myself wondering whether the language it solves is Turing-complete or not. So I coded up a small set of equations which accept any valid expression in the SKI combinator calculus, and produce a result set which contains the normal form of that expression. Since SKI is Turing-complete, proving that my language can execute SKI would demonstrate its Turing-completeness.
There is a glitch, however. The solver does not reduce the expression in normal order. Actually what it does is to try every possible reduction order. Which means that the solution set is typically huge. If a normal form exists, it will be in there somewhere, but it's difficult to tell where.
This brings me to two questions:
Is my language Turing-complete? Or do I need to find a better proof?
Is the number of solutions a computable function of the input?
(At first I assumed that the size of the solution set was exponential or factorial in the input size. But on closer inspection, this is not true. You can write huge expressions which are already in normal form, and tiny expressions which do not terminate. I have a feeling that determining the size of the solution set might be equivilent to solving the Halting Problem, but I'm not completely sure...)

A) As augustss says, your system is clearly turing complete.
B) You're right that determining solution size is the same as the halting problem. If a sequence doesn't terminate, then you get an infinite solution set. So to determine if the set is infinite, you need to determine if a reduction sequence terminates. But that's precisely the halting problem!
C) As I recall, a system that, given a set of instructions to a turing machine, merely says how many steps they take to terminate (which is, I suppose, the cardinality of your solution set) or fails to terminate if the instructions themselves fail to terminate is in itself turing complete. So that should help with the intuition here.

In answer to my own question... I found that by tweaking the source code, I can make it so that if the input SKI expression has a normal form, that normal form will always be solution #1. So if you just ignore any further solutions, the program reduces any SKI expression to normal form.
I believe this constitutes a "better proof". ;-)

Related

Why would more array accesses perform better?

I'm taking a course on coursera that uses minizinc. In one of the assignments, I was spinning my wheels forever because my model was not performing well enough on a hidden test case. I finally solved it by changing the following types of accesses in my model
from
constraint sum(neg1,neg2 in party where neg1 < neg2)(joint[neg1,neg2]) >= m;
to
constraint sum(i,j in 1..u where i < j)(joint[party[i],party[j]]) >= m;
I dont know what I'm missing, but why would these two perform any differently from eachother? It seems like they should perform similarly with the former being maybe slightly faster, but the performance difference was dramatic. I'm guessing there is some sort of optimization that the former misses out on? Or, am I really missing something and do those lines actually result in different behavior? My intention is to sum the strength of every element in raid.
Misc. Details:
party is an array of enum vars
party's index set is 1..real_u
every element in party should be unique except for a dummy variable.
solver was Gecode
verification of my model was done on a coursera server so I don't know what optimization level their compiler used.
edit: Since minizinc(mz) is a declarative language, I'm realizing that "array accesses" in mz don't necessarily have a direct corollary in an imperative language. However, to me, these two lines mean the same thing semantically. So I guess my question is more "Why are the above lines different semantically in mz?"
edit2: I had to change the example in question, I was toting the line of violating coursera's honor code.
The difference stems from the way in which the where-clause "a < b" is evaluated. When "a" and "b" are parameters, then the compiler can already exclude the irrelevant parts of the sum during compilation. If "a" or "b" is a variable, then this can usually not be decided during compile time and the solver will receive a more complex constraint.
In this case the solver would have gotten a sum over "array[int] of var opt int", meaning that some variables in an array might not actually be present. For most solvers this is rewritten to a sum where every variable is multiplied by a boolean variable, which is true iff the variable is present. You can understand how this is less efficient than an normal sum without multiplications.

Reversing a list, evaluation order

I am reading page 69 of Haskell School of Expression and I am not sure that I got the evalution of rev [1:2:3:4] right.
Hudak does not explain the evalution(rewriting) order in detail in his book for reverse.
Could someone please either confirm that my guess (shown in the attached picture) is correct or if not correct then point out what I got wrong. I believe that it is correct but I am not 100% sure, this is the reason for asking.
So the question is:
when I evaluate one step of reverse then aftes the evaluation (i.e. rewriting) the result should be surrounded by parenthesis, right?
If I understand correctly, these unlucky appearance of parentheseses is the reason for the poor (read quadratic) time complexity of reverse. In this example 6 steps are spent in total on list appending in order to reverse a 4 element list.
Yes, nested, left-associative calls to append (in Haskell, goes by the names (++) and (<>)) generates poor performance of singly-linked lists.
There are several solutions to this problem, since it's been known about for 30 or 40 years, at least. I believe the library version of reverse uses an accumulator to achieve linear complexity rather than quadratic, but it's still not something you want to call frequently on lists.

How to find the optimal processing order?

I have an interesting question, but I'm not sure exactly how to phrase it...
Consider the lambda calculus. For a given lambda expression, there are several possible reduction orders. But some of these don't terminate, while others do.
In the lambda calculus, it turns out that there is one particular reduction order which is guaranteed to always terminate with an irreducible solution if one actually exists. It's called Normal Order.
I've written a simple logic solver. But the trouble is, the order in which it processes the constraints seems to have a huge effect on whether it finds any solutions or not. Basically, I'm wondering whether something like a normal order exists for my logic programming language. (Or wether it's impossible for a mere machine to deterministically solve this problem.)
So that's what I'm after. Presumably the answer critically depends on exactly what the "simple logic solver" is. So I will attempt to briefly describe it.
My program is closely based on the system of combinators in chapter 9 of The Fun of Programming (Jeremy Gibbons & Oege de Moor). The language has the following structure:
The input to the solver is a single predicate. Predicates may involve variables. The output from the solver is zero or more solutions. A solution is a set of variable assignments which make the predicate become true.
Variables hold expressions. An expression is an integer, a variable name, or a tuple of subexpressions.
There is an equality predicate, which compares expressions (not predicates) for equality. It is satisfied if substituting every (bound) variable with its value makes the two expressions identical. (In particular, every variable equals itself, bound or not.) This predicate is solved using unification.
There are also operators for AND and OR, which work in the obvious way. There is no NOT operator.
There is an "exists" operator, which essentially creates local variables.
The facility to define named predicates enables recursive looping.
One of the "interesting things" about logic programming is that once you write a named predicate, it typically works fowards and backwards (and sometimes even sideways). Canonical example: A predicate to concatinate two lists can also be used to split a list into all possible pairs.
But sometimes running a predicate backwards results in an infinite search, unless you rearrange the order of the terms. (E.g., swap the LHS and RHS of an AND or an OR somehwere.) I'm wondering whether there's some automated way to detect the best order to run the predicates in, to ensure prompt termination in all cases where the solution set is exactually finite.
Any suggestions?
Relevant paper, I think: http://www.cs.technion.ac.il/~shaulm/papers/abstracts/Ledeniov-1998-DCS.html
Also take a look at this: http://en.wikipedia.org/wiki/Constraint_logic_programming#Bottom-up_evaluation

Why does the halting problem make it impossible for software to determine the time complexity of an algorithm

I've read some articles about big-Oh calculation and the halting problem. Obviously it's not possible for ALL algoritms to say if they ever are going to stop, for example:
while(System.in.readline()){
}
However, what would be the big-Oh of such a program? I think it's not defined, for the same reason it's not possible to say if it's ever going to halt. You don't know that.
So... There are some possible algorithms, where you cannot say if it's ever going to halt. But if you can't say the, the big-Oh of that algorithm is by definition undefined.
Now to my point, calculating the big-oh of a piece of software. Why can't you write a program that does that? Because it is either a function, or not defined.
Also, I've not said anything about the programming language. What about a purely functional programming language? Can it be calculated there?
OK, so let's talk about Turing machines (a similar discussion using the Random-Access model could be had, but I adopt this for simplicity).
An upper-bound on the time complexity of a TM says something about the order of the rate at which the number of transitions the TM makes grows according to the input size. Specifically, if we say a TM executes an algorithm which is O(f(n)) in the worst case for input size n, we are saying that there exists an n0 and c such that, for n > n0, T(n) <= cf(n). So far, so good.
Now, the thing about Turing machines is that they can fail to halt, that is, they can execute forever for some inputs. Clearly, if for some n* > n0 a TM takes an infinite number of steps, there is no f(n) satisfying the condition (with finite n0, c) laid out in the last paragraph; that is, T(N) != O(f(n)) for any f. OK; if we were able to say for certain that a TM would halt for all inputs of length at least n0, for some n0, we're home free. Trouble is, this is equivalent to solving the halting problem.
So we conclude this: if a TM takes forever to halt on an input n > n0, then we cannot define an upper bound on complexity; furthermore, it is an unsolvable problem to algorithmically determine whether the TM will halt on all inputs greater than a fixed, finite n0.
The reason it is impossible to answer the question "is the 'while(System.in.readline()){}' program going to stop?" is that the input is not specified, so in this particular case the problem is lack of information and not undecidability.
The halting problem is about the impossibility of constructing a general algorithm which, when provided with both a program and an input, can always tell whether that program with that input will finish running or continue to run forever.
In the halting problem, both program and input can be arbitrarily large, but they are intended to be finite.
Also, there is no specific instance of 'program + input' that is undecidable in itself: given a specific instance, it is (in principle) always possible to construct an algorithm that analyses that instance and/or class of instances, and calculates the correct answer.
However, if a problem is undecidable, then no matter how many times the algorithm is extended to correctly analyse additional instances or classes of instances, the process will never end: it will always be possible to come up with new instances that the algorithm will not be capable of answering unless it is further extended.
I would say that the big O of "while(System.in.readline()){}" is O(n) where n is the size of the input (the program could be seen as the skeleton of e.g. a line counting program).
The big O is defined in this case because for every input of finite size the program halts.
So the question to be asked might be: "does a program halt on every possible finite input it may be provided with?"
If that queston can be reduced to the halting problem or any other undecidable problem then it is undecidable.
It turns out that it can be reduced, as clarified here:
https://cs.stackexchange.com/questions/41243/halting-problem-reduction-to-halting-for-all-inputs
Undecidability is a property of problems and is independent of programming languages that are used to construct programs that run on the same machines. For instance you may consider that any program written in a functional programming language can be compiled into machine code, but that same machine code can be produced by an equivalent program written in assembly, so from a Turing machine perspective, functional programming languages are no more powerful than assembly languages.
Also, undecidability would not prevent an algorithm from being able to calculate the big O for a countless (theoretically infinite) number of programs, so any effort in constructing an algorithm for that purpose would not necessarily be pointless.

Mathematica: what is symbolic programming?

I am a big fan of Stephen Wolfram, but he is definitely one not shy of tooting his own horn. In many references, he extols Mathematica as a different symbolic programming paradigm. I am not a Mathematica user.
My questions are: what is this symbolic programming? And how does it compare to functional languages (such as Haskell)?
When I hear the phrase "symbolic programming", LISP, Prolog and (yes) Mathematica immediately leap to mind. I would characterize a symbolic programming environment as one in which the expressions used to represent program text also happen to be the primary data structure. As a result, it becomes very easy to build abstractions upon abstractions since data can easily be transformed into code and vice versa.
Mathematica exploits this capability heavily. Even more heavily than LISP and Prolog (IMHO).
As an example of symbolic programming, consider the following sequence of events. I have a CSV file that looks like this:
r,1,2
g,3,4
I read that file in:
Import["somefile.csv"]
--> {{r,1,2},{g,3,4}}
Is the result data or code? It is both. It is the data that results from reading the file, but it also happens to be the expression that will construct that data. As code goes, however, this expression is inert since the result of evaluating it is simply itself.
So now I apply a transformation to the result:
% /. {c_, x_, y_} :> {c, Disk[{x, y}]}
--> {{r,Disk[{1,2}]},{g,Disk[{3,4}]}}
Without dwelling on the details, all that has happened is that Disk[{...}] has been wrapped around the last two numbers from each input line. The result is still data/code, but still inert. Another transformation:
% /. {"r" -> Red, "g" -> Green}
--> {{Red,Disk[{1,2}]},{Green,Disk[{3,4}]}}
Yes, still inert. However, by a remarkable coincidence this last result just happens to be a list of valid directives in Mathematica's built-in domain-specific language for graphics. One last transformation, and things start to happen:
% /. x_ :> Graphics[x]
--> Graphics[{{Red,Disk[{1,2}]},{Green,Disk[{3,4}]}}]
Actually, you would not see that last result. In an epic display of syntactic sugar, Mathematica would show this picture of red and green circles:
But the fun doesn't stop there. Underneath all that syntactic sugar we still have a symbolic expression. I can apply another transformation rule:
% /. Red -> Black
Presto! The red circle became black.
It is this kind of "symbol pushing" that characterizes symbolic programming. A great majority of Mathematica programming is of this nature.
Functional vs. Symbolic
I won't address the differences between symbolic and functional programming in detail, but I will contribute a few remarks.
One could view symbolic programming as an answer to the question: "What would happen if I tried to model everything using only expression transformations?" Functional programming, by contrast, can been seen as an answer to: "What would happen if I tried to model everything using only functions?" Just like symbolic programming, functional programming makes it easy to quickly build up layers of abstractions. The example I gave here could be easily be reproduced in, say, Haskell using a functional reactive animation approach. Functional programming is all about function composition, higher level functions, combinators -- all the nifty things that you can do with functions.
Mathematica is clearly optimized for symbolic programming. It is possible to write code in functional style, but the functional features in Mathematica are really just a thin veneer over transformations (and a leaky abstraction at that, see the footnote below).
Haskell is clearly optimized for functional programming. It is possible to write code in symbolic style, but I would quibble that the syntactic representation of programs and data are quite distinct, making the experience suboptimal.
Concluding Remarks
In conclusion, I advocate that there is a distinction between functional programming (as epitomized by Haskell) and symbolic programming (as epitomized by Mathematica). I think that if one studies both, then one will learn substantially more than studying just one -- the ultimate test of distinctness.
Leaky Functional Abstraction in Mathematica?
Yup, leaky. Try this, for example:
f[x_] := g[Function[a, x]];
g[fn_] := Module[{h}, h[a_] := fn[a]; h[0]];
f[999]
Duly reported to, and acknowledged by, WRI. The response: avoid the use of Function[var, body] (Function[body] is okay).
You can think of Mathematica's symbolic programming as a search-and-replace system where you program by specifying search-and-replace rules.
For instance you could specify the following rule
area := Pi*radius^2;
Next time you use area, it'll be replaced with Pi*radius^2. Now, suppose you define new rule
radius:=5
Now, whenever you use radius, it'll get rewritten into 5. If you evaluate area it'll get rewritten into Pi*radius^2 which triggers rewriting rule for radius and you'll get Pi*5^2 as an intermediate result. This new form will trigger a built-in rewriting rule for ^ operation so the expression will get further rewritten into Pi*25. At this point rewriting stops because there are no applicable rules.
You can emulate functional programming by using your replacement rules as function. For instance, if you want to define a function that adds, you could do
add[a_,b_]:=a+b
Now add[x,y] gets rewritten into x+y. If you want add to only apply for numeric a,b, you could instead do
add[a_?NumericQ, b_?NumericQ] := a + b
Now, add[2,3] gets rewritten into 2+3 using your rule and then into 5 using built-in rule for +, whereas add[test1,test2] remains unchanged.
Here's an example of an interactive replacement rule
a := ChoiceDialog["Pick one", {1, 2, 3, 4}]
a+1
Here, a gets replaced with ChoiceDialog, which then gets replaced with the number the user chose on the dialog that popped up, which makes both quantities numeric and triggers replacement rule for +. Here, ChoiceDialog as a built-in replacement rule along the lines of "replace ChoiceDialog[some stuff] with the value of button the user clicked".
Rules can be defined using conditions which themselves need to go through rule-rewriting in order to produce True or False. For instance suppose you invented a new equation solving method, but you think it only works when the final result of your method is positive. You could do the following rule
solve[x + 5 == b_] := (result = b - 5; result /; result > 0)
Here, solve[x+5==20] gets replaced with 15, but solve[x + 5 == -20] is unchanged because there's no rule that applies. The condition that prevents this rule from applying is /;result>0. Evaluator essentially looks the potential output of rule application to decide whether to go ahead with it.
Mathematica's evaluator greedily rewrites every pattern with one of the rules that apply for that symbol. Sometimes you want to have finer control, and in such case you could define your own rules and apply them manually like this
myrules={area->Pi radius^2,radius->5}
area//.myrules
This will apply rules defined in myrules until result stops changing. This is pretty similar to the default evaluator, but now you could have several sets of rules and apply them selectively. A more advanced example shows how to make a Prolog-like evaluator that searches over sequences of rule applications.
One drawback of current Mathematica version comes up when you need to use Mathematica's default evaluator (to make use of Integrate, Solve, etc) and want to change default sequence of evaluation. That is possible but complicated, and I like to think that some future implementation of symbolic programming will have a more elegant way of controlling evaluation sequence
As others here already mentioned, Mathematica does a lot of term rewriting. Maybe Haskell isn't the best comparison though, but Pure is a nice functional term-rewriting language (that should feel familiar to people with a Haskell background). Maybe reading their Wiki page on term rewriting will clear up a few things for you:
http://code.google.com/p/pure-lang/wiki/Rewriting
Mathematica is using term rewriting heavily. The language provides special syntax for various forms of rewriting, special support for rules and strategies. The paradigm is not that "new" and of course it's not unique, but they're definitely on a bleeding edge of this "symbolic programming" thing, alongside with the other strong players such as Axiom.
As for comparison to Haskell, well, you could do rewriting there, with a bit of help from scrap your boilerplate library, but it's not nearly as easy as in a dynamically typed Mathematica.
Symbolic shouldn't be contrasted with functional, it should be contrasted with numerical programming. Consider as an example MatLab vs Mathematica. Suppose I want the characteristic polynomial of a matrix. If I wanted to do that in Mathematica, I could do get an identity matrix (I) and the matrix (A) itself into Mathematica, then do this:
Det[A-lambda*I]
And I would get the characteristic polynomial (never mind that there's probably a characteristic polynomial function), on the other hand, if I was in MatLab I couldn't do it with base MatLab because base MatLab (never mind that there's probably a characteristic polynomial function) is only good at calculating finite-precision numbers, not things where there are random lambdas (our symbol) in there. What you'd have to do is buy the add-on Symbolab, and then define lambda as its own line of code and then write this out (wherein it would convert your A matrix to a matrix of rational numbers rather than finite precision decimals), and while the performance difference would probably be unnoticeable for a small case like this, it would probably do it much slower than Mathematica in terms of relative speed.
So that's the difference, symbolic languages are interested in doing calculations with perfect accuracy (often using rational numbers as opposed to numerical) and numerical programming languages on the other hand are very good at the vast majority of calculations you would need to do and they tend to be faster at the numerical operations they're meant for (MatLab is nearly unmatched in this regard for higher level languages - excluding C++, etc) and a piss poor at symbolic operations.

Resources