Generate triple (Network.HTTP.ResponseCode) using an instance of Arbitrary - haskell

I have a function that takes a ResponseCode from Network.HTTP. In order to test it with QuickCheck, I wanted to write an instance of Arbitrary for ResponseCode. (In case you don't know, a ResponseCode is just a triple of ints in that library: type ResponseCode = (Int, Int, Int)).
So I wrote something like this:
instance Arbitrary ResponseCode where
arbitrary = triple ( elements [1..6] )
where triple f = (f, f, f)
First of all, GHC complains that the way I'm using types is not standard haskell so I would have to use some compiler flags (which is not really what I want since I feel like there must be an easy solution for this simple problem without flags).
Secondly, my arbitrary function has the wrong type, which is pretty obvious. But then I really didn't figure out how to write a function that returns a triple with random Ints ranging from 1-6.
I would appreciate if somebody could help me out here.
Thank you.

First of all, there is already are these two instances:
instance Arbitrary Int
instance (Arbitrary a, Arbitrary b, Arbitrary c) =>
Arbitrary (a, b, c)
This means that (Int,Int,Int) is already an instance of Arbitrary. This means that the type synonym ResponseCode is already an instance. You cannot define and use a second instance.
You could try using Test.QuickCheck.Gen.suchThat but I hypothesize that it will not work well in this case. If you can, I suggest using a newtype wrapper:
import Test.QuickCheck
import Network.HTTP.Base
import Control.Applicative
import System.Random
newtype Arb'ResponseCode = Arb'ResponseCode { arb'ResponseCode :: ResponseCode }
deriving (Show)
instance Arbitrary Arb'ResponseCode where
arbitrary = do
responseCode <- (,,) <$> f <*> f <*> f
return (Arb'ResponseCode responseCode)
where f = elements [1..6]
-- To use this you can call
-- (fmap arb'ResponseCode arbitrary)
-- instead of just (arbitrary)
Or perhaps use the built-in (Int,Int,Int) instance and post-process the three elements with (succ . (mod 6)).

Related

Set specific properties for data in Haskell

Let us say I want to make a ADT as follows in Haskell:
data Properties = Property String [String]
deriving (Show,Eq)
I want to know if it is possible to give the second list a bounded and enumerated property? Basically the first element of the list will be the minBound and the last element will be the maxBound. I am trying,
data Properties a = Property String [a]
deriving (Show, Eq)
instance Bounded (Properties a) where
minBound a = head a
maxBound a = (head . reverse) a
But not having much luck.
Well no, you can't do quite what you're asking, but maybe you'll find inspiration in this other neat trick.
{-# language ScopedTypeVariables, FlexibleContexts, UndecidableInstances #-}
import Data.Reflection -- from the reflection package
import qualified Data.List.NonEmpty as NE
import Data.List.NonEmpty (NonEmpty (..))
import Data.Proxy
-- Just the plain string part
newtype Pstring p = P String deriving Eq
-- Those properties you're interested in. It will
-- only be possible to produce bounds if there's at
-- least one property, so NonEmpty makes more sense
-- than [].
type Props = NonEmpty String
-- This is just to make a Show instance that does
-- what you seem to want easier to write. It's not really
-- necessary.
data Properties = Property String [String] deriving Show
Now we get to the key part, where we use reflection to produce class instances that can depend on run-time values. Roughly speaking, you can think of
Reifies x t => ...
as being a class-level version of
\(x :: t) -> ...
Because it operates at the class level, you can use it to parametrize instances. Since Reifies x t binds a type variable x, rather than a term variable, you need to use reflect to actually get the value back. If you happen to have a value on hand whose type ends in p, then you can just apply reflect to that value. Otherwise, you can always magic up a Proxy :: Proxy p to do the job.
-- If some Props are "in the air" tied to the type p,
-- then we can show them along with the string.
instance Reifies p Props => Show (Pstring p) where
showsPrec k p#(P str) =
showsPrec k $ Property str (NE.toList $ reflect p)
-- If some Props are "in the air" tied to the type p,
-- then we can give Pstring p a Bounded instance.
instance Reifies p Props => Bounded (Pstring p) where
minBound = P $ NE.head (reflect (Proxy :: Proxy p))
maxBound = P $ NE.last (reflect (Proxy :: Proxy p))
Now we need to have a way to actually bind types that can be passed to the type-level lambdas. This is done using the reify function. So let's throw some Props into the air and then let the butterfly nets get them back.
main :: IO ()
main = reify ("Hi" :| ["how", "are", "you"]) $
\(_ :: Proxy p) -> do
print (minBound :: Pstring p)
print (maxBound :: Pstring p)
./dfeuer#squirrel:~/src> ./WeirdBounded
Property "Hi" ["Hi","how","are","you"]
Property "you" ["Hi","how","are","you"]
You can think of reify x $ \(p :: Proxy p) -> ... as binding a type p to the value x; you can then pass the type p where you like by constraining things to have types involving p.
If you're just doing a couple of things, all this machinery is way more than necessary. Where it gets nice is when you're performing lots of operations with values that have phantom types carrying extra information. In many cases, you can avoid most of the explicit applications of reflect and the explicit proxy handling, because type inference just takes care of it all for you. For a good example of this technique in action, see the hyperloglog package. Configuration information for the HyperLogLog data structure is carried in a type parameter; this guarantees, at compile time, that only similarly configured structures are merged with each other.

Functions with higher kinds?

Suppose the following data types are defined:
data X a = X {getX :: a}
data Y a = Y {getY :: a}
data Z a = Z {getZ :: a}
Must there be three separate functions, getX, getY, and getZ? It seems to me that there could be a function defined something like this:
get :: forall (τ :: (* -> *)) (a :: *). τ a -> a
get (_ x) = x
Obviously this is not valid standard Haskell, but there are so many extensions to GHC that seem like they might have a solution (RankNTypes,ExistentialQuantification,DataKinds,etc.). Besides the simple reason of avoiding a tiny amount of typing, there is the benefit of avoiding the namespace pollution that the record solution creates. I suppose this is really just a more implicit solution than using a type class like this:
class Get f where
get :: f a -> a
However, it appears that defining a generic function would be more useful than a type class, because the fact that it is implicitly defined means it could be used in many more places, in the same way that ($) or (.) is used. So my question has three parts: is there a way to accomplish this, is it a good idea, and if not, what is a better way?
How about this type?
newtype Pred a = Pred (a -> Bool)
Or this one?
data Proxy a = Proxy
There's no way to get an a out of a Pred a. You can only put as in. Likewise, there's no way to get an a out of a Proxy a, because there aren't any as inside it.
So a function get :: forall f a. f a -> a can't exist in general. You need to use a type class to distinguish between those types f from which you can extract an a and those from which you can't.
Well, that unconstrained generic type of get certainly can't work. This would also allow you to extract, say, a Void value from Const () :: Const () Void.
You can however obtain a suitably constrained version of this function quite simply with generics. You still need a type class, but not need to define instances in the traditional sense. It ultimately looks like this:
{-# LANGUAGE TypeFamilies, DeriveGeneric, DeriveAnyClass #-}
import GHC.Generics
class Get τ where
get :: τ a -> a
data X a = X a deriving (Generic1, Get)
data Y a = Y a deriving (Generic1, Get)
data Z a = Z a deriving (Generic1, Get)
To actually get this to work, we only need two weird representation-type instances:
instance Get f => Get (M1 i t f) where get = get . unM1
instance Get Par1 where get = unPar1
Now the actual implementation for X, Y and Z can just use a default signature and reduce the extraction to the underlying type-representation. To this end, define the class thus:
{-# LANGUAGE DefaultSignatures #-}
class Get τ where
get :: τ a -> a
default get :: (Generic1 τ, Get (Rep1 τ)) => τ a -> a
get = get . from1

Parsing to Free Monads

Say I have the following free monad:
data ExampleF a
= Foo Int a
| Bar String (Int -> a)
deriving Functor
type Example = Free ExampleF -- this is the free monad want to discuss
I know how I can work with this monad, eg. I could write some nice helpers:
foo :: Int -> Example ()
foo i = liftF $ Foo i ()
bar :: String -> Example Int
bar s = liftF $ Bar s id
So I can write programs in haskell like:
fooThenBar :: Example Int
fooThenBar =
do
foo 10
bar "nice"
I know how to print it, interpret it, etc. But what about parsing it?
Would it be possible to write a parser that could parse arbitrary
programs like:
foo 12
bar nice
foo 11
foo 42
So I can store them, serialize them, use them in cli programs etc.
The problem I keep running into is that the type of the program depends on which program is being parsed. If the program ends with a foo it's of
type Example () if it ends with a bar it's of type Example Int.
I do not feel like writing parsers for every possible permutation (it's simple here because there are only two possibilities, but imagine we add
Baz Int (String -> a), Doo (Int -> a), Moz Int a, Foz String a, .... This get's tedious and error-prone).
Perhaps I'm solving the wrong problem?
Boilerplate
To run the above examples, you need to add this to the beginning of the file:
{-# LANGUAGE DeriveFunctor #-}
import Control.Monad.Free
import Text.ParserCombinators.Parsec
Note: I put up a gist containing this code.
Not every Example value can be represented on the page without reimplementing some portion of Haskell. For example, return putStrLn has a type of Example (String -> IO ()), but I don't think it makes sense to attempt to parse that sort of Example value out of a file.
So let's restrict ourselves to parsing the examples you've given, which consist only of calls to foo and bar sequenced with >> (that is, no variable bindings and no arbitrary computations)*. The Backus-Naur form for our grammar looks approximately like this:
<program> ::= "" | <expr> "\n" <program>
<expr> ::= "foo " <integer> | "bar " <string>
It's straightforward enough to parse our two types of expression...
type Parser = Parsec String ()
int :: Parser Int
int = fmap read (many1 digit)
parseFoo :: Parser (Example ())
parseFoo = string "foo " *> fmap foo int
parseBar :: Parser (Example Int)
parseBar = string "bar " *> fmap bar (many1 alphaNum)
... but how can we give a type to the composition of these two parsers?
parseExpr :: Parser (Example ???)
parseExpr = parseFoo <|> parseBar
parseFoo and parseBar have different types, so we can't compose them with <|> :: Alternative f => f a -> f a -> f a. Moreover, there's no way to know ahead of time which type the program we're given will be: as you point out, the type of the parsed program depends on the value of the input string. "Types depending on values" is called dependent types; Haskell doesn't feature a proper dependent type system, but it comes close enough for us to have a stab at making this example work.
Let's start by forcing the expressions on either side of <|> to have the same type. This involves erasing Example's type parameter using existential quantification.†
data Ex a = forall i. Wrap (a i)
parseExpr :: Parser (Ex Example)
parseExpr = fmap Wrap parseFoo <|> fmap Wrap parseBar
This typechecks, but the parser now returns an Example containing a value of an unknown type. A value of unknown type is of course useless - but we do know something about Example's parameter: it must be either () or Int because those are the return types of parseFoo and parseBar. Programming is about getting knowledge out of your brain and onto the page, so we're going to wrap up the Example value with a bit of GADT evidence which, when unwrapped, will tell you whether a was Int or ().
data Ty a where
IntTy :: Ty Int
UnitTy :: Ty ()
data (a :*: b) i = a i :&: b i
type Sig a b = Ex (a :*: b)
pattern Sig x y = Wrap (x :&: y)
parseExpr :: Parser (Sig Ty Example)
parseExpr = fmap (\x -> Sig UnitTy x) parseFoo <|>
fmap (\x -> Sig IntTy x) parseBar
Ty is (something like) a runtime "singleton" representative of Example's type parameter. When you pattern match on IntTy, you learn that a ~ Int; when you pattern match on UnitTy you learn that a ~ (). (Information can be made to flow the other way, from types to values, using classes.) :*:, the functor product, pairs up two type constructors ensuring that their parameters are equal; thus, pattern matching on the Ty tells you about its accompanying Example.
Sig is therefore called a dependent pair or sigma type - the type of the second component of the pair depends on the value of the first. This is a common technique: when you erase a type parameter by existential quantification, it usually pays to make it recoverable by bundling up a runtime representative of that parameter.
Note that this use of Sig is equivalent to Either (Example Int) (Example ()) - a sigma type is a sum, after all - but this version scales better when you're summing over a large (or possibly infinite) set.
Now it's easy to build our expression parser into a program parser. We just have to repeatedly apply the expression parser, and then manipulate the dependent pairs in the list.
parseProgram :: Parser (Sig Ty Example)
parseProgram = fmap (foldr1 combine) $ parseExpr `sepBy1` (char '\n')
where combine (Sig _ val) (Sig ty acc) = Sig ty (val >> acc)
The code I've shown you is not exemplary. It doesn't separate the concerns of parsing and typechecking. In production code I would modularise this design by first parsing the data into an untyped syntax tree - a separate data type which doesn't enforce the typing invariant - then transform that into a typed version by type-checking it. The dependent pair technique would still be necessary to give a type to the output of the type-checker, but it wouldn't be tangled up in the parser.
*If binding is not a requirement, have you thought about using a free applicative to represent your data?
†Ex and :*: are reusable bits of machinery which I lifted from the Hasochism paper
So, I worry that this is the same sort of premature abstraction that you see in object-oriented languages, getting in the way of things. For example, I am not 100% sure that you are using the structure of the free monad -- your helpers for example simply seem to use id and () in a rather boring way, in fact I'm not sure if your Int -> x is ever anything other than either Pure :: Int -> Free ExampleF Int or const (something :: Free ExampleF Int).
The free monad for a functor F can basically be described as a tree whose data is stored in leaves and whose branching factor is controlled by the recursion in each constructor of the functor F. So for example Free Identity has no branching, hence only one leaf, and thus has the same structure as the monad:
data MonoidalFree m x = MF m x deriving (Functor)
instance Monoid m => Monad (MonoidalFree m) where
return x = MF mempty x
MF m x >>= my_x = case my_x x of MF n y -> MF (mappend m n) y
In fact Free Identity is isomorphic to MonoidalFree (Sum Integer), the difference is just that instead of MF (Sum 3) "Hello" you see Free . Identity . Free . Identity . Free . Identity $ Pure "Hello" as the means of tracking this integer. On the other hand if you have data E x = L x | R x deriving (Functor) then you get a sort of "path" of Ls and Rs before you hit this one leaf, Free E is going to be isomorphic to MonoidalFree [Bool].
The reason I'm going through this is that when you combine Free with an Integer -> x functor, you get an infinitely branching tree, and when I'm looking through your code to figure out how you're actually using this tree, all I see is that you use the id function with it. As far as I can tell, that restricts the recursion to either have the form Free (Bar "string" Pure) or else Free (Bar "string" (const subExpression)), in which case the system would seem to reduce completely to the MonoidalFree [Either Int String] monad.
(At this point I should pause to ask: Is that correct as far as you know? Was this what was intended?)
Anyway. Aside from my problems with your premature abstraction, the specific problem that you're citing with your monad (you can't tell the difference between () and Int has a bunch of really complicated solutions, but one really easy one. The really easy solution is to yield a value of type Example (Either () Int) and if you have a () you can fmap Left onto it and if you have an Int you can fmap Right onto it.
Without a much better understanding of how you're using this thing over TCP/IP we can't recommend a better structure for you than the generic free monads that you seem to be finding -- in particular we'd need to know how you're planning on using the infinite-branching of Int -> x options in practice.

Can't define custom `Arbitrary` instance for `Char` since it already exists

I tried following the Introduction to Quickcheck and wanted to test my function which takes strings containing of digits. For that, I defined an Arbitrary instance for Char:
instance Arbitrary Char where
arbitrary = choose ('0', '9')
But ghc complains about that:
A.hs:16:10:
Duplicate instance declarations:
instance Arbitrary Char -- Defined at A.hs:16:10
instance [overlap ok] [safe] Arbitrary Char
-- Defined in ‘Test.QuickCheck.Arbitrary’
How can I tell it to forget about the already defined instance and use my own instance? Or will it not work that way at all (which would be strange, since the tutorial takes that approach)?
As #carsten-könig adviced, a solution would be to make a newtype wrapper for Char. This is not a workaround, but a proper and really nice way to escape a whole class of problems that are related to orphan instances (instances for typeclasses which are defined in another module), read more about such problems here.
Moreover, this approach is widely used when there are several possible instances with different behaviour.
For example, consider the Monoid typeclass which is defined in Data.Monoid as:
class Monoid a where
mempty :: a -- ^ Identity of 'mappend'
mappend :: a -> a -> a -- ^ An associative operation
As you may already know Monoid is a type of values which can be appended to each other (using mappend) and for which there exists an 'identity' value mempty which satisfies a rule mappend mempty a == a (appending an identity to value a results in a). There is an obvious instance of Monoid for Lists:
class Monoid [a] where
mempty = []
mappend = (++)
It's also easy to define Ints. Indeed integers with addition operation form a correct monoid.
class Monoid Int where
mempty = 0
mappend = (+)
But is it the only possible monoid for integers? Of course it isn't, multiplication on integers would form another proper monoid:
class Monoid Int where
mempty = 1
mappend = (*)
Both instances are correct, but now we have a problem: if you would try to evaluate 1 `mappend` 2, there is no way to figure out which instance must be used.
That's why Data.Monoid wraps the instances for numbers into newtype wrappers, namely Sum and Product.
Going further, your statement
instance Arbitrary Char where
arbitrary = choose ('0', '9')
might be very confusing. It says "I am an arbitrary character" but produces only digit characters. In my opinion this would be much better:
newtype DigitChar = DigitChar Char deriving (Eq, Show)
instance Arbitrary DigitChar where
arbitrary = fmap DigitChar (choose ('0', '9'))
A piece of cake. You can go further and hide a DigitChar constructor, providing digitChar 'smart constructor', which wouldn't allow to create a DigitChar which is not actually a digit.
As of your question "Do you know why that's not the approach the tutorial took?", I think the reason is simple, the tutorial seems to be written in 2006, and in those days quickcheck simply didn't define an Arbitrary instance for Char. So the code in tutorial was perfectly valid back in the days.
You do not need to create new Arbitrary instances for ad-hoc test input generation. You can use QuickCheck's forAll combinator to explicitly pick a Gen a to a function:
digit :: Gen Char
digit = choose ('0', '9)
prop_myFun = forAll digit $ \x -> isAwesome (myFun x)

Are there "type-level combinators"? Will they exist in some future?

Much of what makes haskell really nice to use in my opinion are combinators such as (.), flip, $ <*> and etc. It feels almost like I can create new syntax when I need to.
Some time ago I was doing something where it would be tremendously convenient if I could "flip" a type constructor. Suppose I have some type constructor:
m :: * -> * -> *
and that I have a class MyClass that needs a type with a type constructor with kind * -> *. Naturally I would choose to code the type in such a way that I can do:
instance MyClass (m a)
But suppose I can't change that code, and suppose that what really fits into MyClass is something like
type w b = m b a
instance MyClass w where
...
and then I'd have to activate XTypeSynonymInstances. Is there some way to create a "type level combinator" Flip such that I can just do:
instance MyClass (Flip m a) where
...
?? Or other type level generalisations of common operators we use in haskell? Is this even useful or am I just rambling?
Edit:
I could do something like:
newtype Flip m a b = Flip (m b a)
newtype Dot m w a = Dot m (w a)
...
But then I'd have to use the data constructors Flip, Dot, ... around for pattern matching and etc. Is it worth it?
Your question makes sense, but the answer is: no, it's not currently possible.
The problem is that (in GHC Haskell's type system) you can't have lambdas at the type level. For anything you might try that looks like it could emulate or achieve the effect of a type level lambda, you will discover that it doesn't work. (I know, because I did.)
What you can do is declare your Flip newtypes, and then write instances of the classes you want for them, painfully with the wrapping and the unwrapping (by the way: use record syntax), and then clients of the classes can use the newtypes in type signatures and not have to worry about the details.
I'm not a type theorist and I don't know the details of why exactly we can't have type level lambdas. I think it was something to do with type inference becoming impossible, but again, I don't really know.
You can do the following, but I don't think its actually very useful, since you still can't really partially apply it:
{-# LANGUAGE TypeFamilies, FlexibleInstances #-}
module Main where
class TFlip a where
type FlipT a
instance TFlip (f a b) where
type FlipT (f a b) = f b a
-- *Main> :t (undefined :: FlipT (Either String Int))
-- (undefined :: FlipT (Either String Int)) :: Either Int [Char]
Also see this previous discussion: Lambda for type expressions in Haskell?
I'm writing answer here just for clarifying things and to tell about achievements in the last years. There're a lot of features in Haskell and now you can write some operators in type. Using $ you can write something like this:
foo :: Int -> Either String $ Maybe $ Maybe Int
to avoid parenthesis instead of good old
foo :: Int -> Either String (Maybe (Maybe Int))

Resources