DBpedia/Yago integration - dbpedia

My understanding is that DBpedia takes from YAGO the class hierarchy, not the entities, as per http://wiki.dbpedia.org/Datasets. However, something like http://dbpedia.org/class/yago/AlbertEinstein or http://dbpedia.org/class/yago/Europe, correspond to YAGO entities, not classes. Those are easy to identify, the usually have the rdfs:label property only.
Is there an explanation for this?

YAGO: A Core of Semantic Knowledge Unifying WordNet and Wikipedia says:
Classes are also entities. Thus, each class is itself an instance
of a class, namely of the class class.

In RDF, Everything is either a resource, a property, or a Literal. Entities and classes are considered Resources.
DBPedia maps the entities to multiple types, including the ones in YAGO. It also has the Wikipedia categories that you can query using dcterms:subject.

Related

Normalization versus multiple inheritance

I have to model a situation where I would like to use specializations to ensure classes are somewhat normalized, but:
Risk multiple inheritance problems, especially in the long run
Will need to derive an XML-compliant UML model from it (a.o., only one superclass allowed)
The simplified situation is as follows (see also diagram below): we have Parts, like doors, bolts, wheels, etc., and Tools, like drills, ladders, and bigger machinery. All of these may be used in generic processes, like Orders, Shipments, etc. As such, I would like to have one superclass (Powertype, maybe?) that represents them, say Item.
Both Tools and Parts have specialized classes that carry a serial number. As such, I figured that a SerializedItem class with a SerialNumber, which both SerializedPart and SerializedTool inherit, would ensure that all serialized 'things' we have carry at least the same information. However, I also need these Serialized items to carry at least the same information as their more generic parts, and hence I would introduce multiple inheritance.
I have considered making the Item classes interfaces. This would at least mitigate some (many, all?) multiple inheritance problems. This is where another however comes in: aside from an attribute SerialNumber, I would also like to enforce that all Serialized specializations have an aggregation relation with a Manufacturer. Aggregation to an interface is not allowed, so I feel like I cannot with one relation to the superclass enforce this relation.
As such, I have the following considerations/problems:
Have two disjoint 'branches' of Item, with little to no technical governance on content of Serialized specializations
Item classes as Interfaces, but then little governance w.r.t. use of Manufacturer by Serialized specializations
All concrete classes, but then there exist multiple inheritance issues which must be solved when trying to derive XML classes from the model
Which option would you prefer, and why? Did I miss any considerations?
If you want to have a (platform-independent) information design model (similar in spirit to a conceptual model), then you should use multiple-inheritance if this reflects the concepts of your problem domain.
According to such a model-based engineering approach, your model is a pretty good design model that can be used as a basis for making (platform-specific) implementation models such as, e.g., a Java class model or an XML Schema model.
For making an XML Schema model, you would have to choose a certain mapping. In particular, you need to choose a mapping for resolving the multiple inheritance pattern, see also https://stackoverflow.com/a/27102169/2795909.
I just would not make SerializedItem a superclass. Nothing is a serialized thing which generalization would mean. Things can conform to a serialization protocol which is the same as implementing an interface (maybe called Serializable). If you happen to deal with serializable things without bothering about their content you would just deal with Serializable and only know the number.
Basically you should make your SerializedItem an interface (eventually renaming it to Serializable), remove the generalization upwards and make the two horizontal ones realizations.
This is probably not an ultima ratio. But to me this approach sounds more reasonable.

What is a Stereotype in Unified modelling language?

My question is about a UML keyword. When I'm learning software engineering class diagrams, I met this Stereotype keyword. I searched through the web, but I can't get a clear idea of what it means.
A stereotype is a way of "painting" UML elements. Take classes for example. Anything can be reduced to a class. And that would generally be fine. But with a large number of different classes your domain gets crowded. So you stereotype classes. This is a way of painting/badging them. E.g. in a car factory you have lots of parts (classes). And you would like to group some as <<motor>>, <<mounting material>>, <<frame>>, etc.
In order to use a stereotype you need to define a profile. The profile allows to attach individual properties (formerly tagged values) to each stereotype. E.g. for the <<frame>> you'd like to have a material property which can take "plastic" and "metal" and the like.

How to model a mixin in UML

What is the best way to represent a "mixin" using UML?
As documented in this article:
In object-oriented programming languages, a mixin refers to a defined
amount of functionality which can be added to a class. An important
aspect of this is that it makes it possible to concentrate more on the
properties of a particular behaviour than on the inheritance
structures during development.
I will give more details about my particular use case.
I have a collection of classes that model different types of objects. Because all of them can be stored on a storage, I want to use a mixin to implement all the functionality related to "being stored".
Of course, I can use abstract classes but I do not like it because these classes should be part of a different hierarchy of classes and the fact that they can be stored is only a secondary property.
Another option can be to use composition and add the "storage node" as a field of this classes. I do not like this option either for the same reason: I do not want to create any dependency between the classes and the storage.
I have already implemented the solution in Java using a mixin based on dynamic proxies and I would like to document the solution with a clear UML class diagram. Is there a standard way to represent this mixin?
I am also wondering whether it is a good idea to model also how the mixin has been implemented (using proxies) or it is better to use a more abstract representation.
Thanks
Actually there are many ways to model this in UML:
One approach could be to stereotype the operations and properties with <<mixin>> or the like and then use tagged values to describe where you got them from.
Another (I'd prefer) is to actually use a <<mixin>> stereotyped Generalization and attach a note to that telling which operations/properties should be mixed. That would give the implementer a guide to just "lean implementation of the general class".
Eventually you could create <<mixin>> sub-classes with subsets of the ops/props you want to mix in the final class and then Generalize from those.
Probably one could come up with more solutions. Use an approach which suits you best. There is not generic mixin pattern in UML (to my knowledge).

UML class diagrams: References to instances?

Some classes in my class diagram need to reference specific instances of other classes or themselves. Should I just model those the same way i would in an object diagram or is there a better option? In general: Can one combine class and object diagrams, since object diagrams are themselves class diagrams?
thanks!
UML2 introduced Composite Structure Diagram exactly to solve this issue.
In a Composite Structure Diagram you can show classifiers (e.g. Classes) together with theirs internal composition in terms of instances.
This way you can specify exactly which instances are linked to your objects.
See this article for a good explanation.
I agree with #Thomas Killian : you want to mix two different representations.
On the class diagram you will be able to show cardinalities, but not instances relationships. It seems your List class is not a simple list but a chain / linked list.
A ListElement is in fact part of a LinkedList. Two predecessor and successor attributes themselves of type ListElement (or how you wish to call this class, the node role could be noted) will be enough to suggest the behavior. As an attribute has a 1:1 cardinality with the encapsulating class, this respects what you wish to model. Renaming the list class would be a hint for the diagram reader.
Take a look at the Java Linked List source if you want some ideas: this could help you to design a clear class structure, the initial author is not so bad at classes design. In this case, he pushes encapsulation to the excess but the idea is right.

Semantic relationship in UML

I found a definition for association in UML as below.
An "association" in UML is defined as a kind of relationship between
classes,which represents the semantic relationship between two or more classes that
involves connections (links) among their instances .
I am not clear what is semantic relationship. Can anyone explain it with example with comparing it with non semantic relationship?
Associations in plain text
An association is a semantic relationship. The UML clause means that there is a structural relationship between instances of the associated classes independently of any specific implementation. "Semantic" underlines that the relationship is between the instances themselves, and not just "accidentally" for an operation:
Use associations primarily where there are structural relationships among objects. Do not use them to show transient relationships such as parameters or local variables of procedures.- Booch, Rumbaugh & Jacobson in Unified Modeling Language User Guide, 2nd edition
More arguments
What is "semantic"?
The term "semantic" is borrowed from linguistics and refers to the meanings behind the words. Linguists and map words (e.g. "Car", "Driver") to their meaning (e.g. a real car, a real person), and analyze the relation between words with a view of this mapping:
So, applying this to UML (modelling language) if you'd have the classes Car and Driver, you CAN model the semantic relationship as an association between the two classes.
What is not semantic?
Not all relationships are of semantic nature. You can have dependencies, which can express a technical relationship:
a transient relationship during an operation: with a factory pattern for example, a DriverFactory would «create» a Driver instance. Both instances the factory and the driver are related only at the exact moment of the creation operation. But the two instances are completely independent the nanosecond after.The same applies if the implementation of an operation needs to create a local instance of another class. Both classes are not associated, since we could imagine another implementation that works without such an instance.
a structural dependency: Maybe an operation require some other classes as parameter. Since the parameters themselves are transient, there is no association. But nevertheless, teh class needs to know about the other class.
For the records, I'm grateful to this public domain contributor for the nice car and driver and to 18f for advice on inclusive communication.
The subject of Semantics is sense. If one thing has something that is connected by sense to another thing, it is the semantic relationship. That definition is terribly wide. And, applied to UML relationship, incorrect. It is incorrect for two reasons.
First, UML covers not only Class-Instance languages, such as Java or C++, but pure object languages with heredity created by Prototypes as well. And this second variant is not covered by your definition at all.
Second, in UML you can have class A connected to class B through some complex AssociationClass, that is shown by a box with arrows, not arrow only. And it still will be named an association and it IS a semantic relationship, too. But a the semantic relationship goes from A to B through two classes, it is still a semantic relationship, but it is not an association in UML.
If you are trying to be deep in subject, better read the UML documentation: "An Association classifies a set of tuples representing links between typed instances." (UML 2.5, pharagraph 11.5.1). Notice: ANY link between two instances can be shown as an association. Maybe the book you are reading is wholely not so bad, but in the very place that you have cited the author merely tries to use pretty words not understanding their meaning and not even trying to be understandable to readers and to be CORRECT.
A model says something about the things being modeled. This is its semantics. Almost all elements of UML have semantics, defined in the sections titled "semantics". One exception is the comment. Adding a comment to a model doesn't influence its meaning.
Then why does the UML say this explicitely about associations? The reason is, that an association may or may not say something about the structure. If it doesn't, it is purely semantic.
For example it could tell us, that a Car can have at most one Driver. It doesn't necessarily mean that the car has an attribute of type Driver.
If we want to model that the two associated classes own attributes typed by the other end of the association, the notation will show this by small dots on its ends. Many people are not familiar with this notation and interpret associations without a dot in the same way. However, without the dots attributes are owned by the association itself and the structure of the classes is not influenced.
By the way, a class being the type of a parameter of an operation or having a dependency also means a semantic relationship.

Resources