Producing Vector Graphics Movies with something like Nodebox or Processing - svg

I like the idea of Nodebox and Processing, and would like to generate movies to visualize some data/algorithms. However, Nodebox exports extremely bloated Quicktime files with frame by frame images, and Processing only exports Java applications. I want to be able to export movies that don't take a Gigabyte a minute of disk space. Perhaps something like SVG animations or Actionscript which stores the vector graphics definition of the animation rather than frame images would be better. Is there a framework that is as easy to program as Nodebox and Processing and can export "lean" movies?

Have you tried the MovieMaker library that ships with Processing ?
Also, it should be fairly simple to save multiple frames using saveFrame().
This is option have a couple of advantages:
If your sketch crashes at some point, you still have all the frames up to that point (unlike writing a .mov file)
It's fairly simple to put the frames back into a video file, but you also have control over playback speed and can easily do a bit of editing if needed.
You can try to a sequence of PDF file using createGraphics() to get vector output, but I'm not sure how stable/feasible this option is.

They are changing the way this works moving towards 2.0 too, as they are moving to GSVideo over Quicktime...
Daniel Shiffman posted about it recently on his blog, but it's the only place I've heard about any changes to post-2.0 tactics (though he IS part of the inner circle, I know)
You can find that post at
http://www.shiffman.net/2011/12/28/night-8-rendering-out-as-image-sequence/
Also, if you are on OSX, you can try Syphon ? See info here
https://forum.processing.org/topic/syphon-integration-with-processing

Related

How can I create a 3D model file from geometric shapes?

I am writing a program that will output 3D model files based on simple geometric shapes (e. g. rectangular prisms & cylinders) with known coordinates in 3-dimensional space. As an example, imagine creating a 3D model of stonehenge. this question suggests that OBJ files are the easiest to generate, but I'm struggling to find a good tutorial or easy-to-use library for doing so.
Can anyone either
(1) describe step-by-step how to create a simple file OR
(2) point me to a tutorial that describes how to do so
Notes:
* Using a GUI-based program to draw such files is not an option for me
* I have no prior experience with 3D modeling
* Other formats such as WRL or DAE would work for me as well
EDIT:
I do not need to use textures, just combinations of simple geometric shapes positioned in 3D space.
I strongly recommend to use some ASCII exchange format there are many out there I usually use these:
*.x DirectX object (it is a C++ source code)
this one is easiest to implement !!! But there are not many tools that can handle them. If you do not want to spend too much time coding then this is the right choice. Just copy the templates (at the start) from any *.x file to get started.
here some specs
*.iges common and importable on most CAD/CAM platform (Catia included)
this one is a bit complicated but for export purposes it is not that bad. It supports Volume operation like +,-,&,^ which are VERY HARD to implement properly but you do not have to use them :)
*.dxf AutoCAD exchange format
this one is even more complicated then IGES. I do not recommend to use it
*.ac AC3D
I first saw this one in flight gear.
here some specs
at first look it is quite easy but the sub-object implementation is really tricky. Unless you use it you should be fine.
This approach is easily verifiable in note pad or by loading to some 3D model viewer. Chose one that is most suitable for your needs and code save/load function to your Apps internal model class/struct. This way you will be compatible with other software and eliminate incompatibility problems which are native to creating 'almost known' binary formats like 3ds,...
In your case I would use IGES (Initial Graphics Exchange Specification)
For export you do not need to implement all just few basic shapes so it would not be too difficult. I code importers which are much much more complicated. Mine IGES loader class is about 30KB of C++ source code look here for more info
You did not provide any info about your 3D mesh model structure and capabilities
like what primitives you use, are your object simple or in skeleton hierarchy, are you using textures, and more ... so it is impossible to answer
Anyway export often looks like this:
create header and structure of target file format
if the format has any directory structure fill it and write it (IGES)
for sub-objects do not forget to add transformation matrices ...
write the chunks you need (points list, faces list, normals, ...)
With ASCII formats you can do this inside String variable so you can easily insert into or modify. Do all thing in memory and write the whole thing to file at the end which is fast and also add capability to work with memory instead of files. This is handy if you want to pack many files to single package file like *.pak or send/receive files through IPC or LAN ...
[Edit1] more about IGES
fileformat specs
I learned IGES from this pdf ... Have no clue where from I got it but this was first valid link I found in google today. I am sure there is some non registration link out there too. It is about 13.7 MB and original name IGES5-3_forDownload.pdf.
win32 viewer
this is free IGES viewer. I do not like the interface and handling but it works. It is necessary to have functional viewer for testing yours ...
examples
here are many tutorial files for many entities there are 3 sub-links (igs,peek,gif) where you can see example file in more ways for better understanding.
exporting to IGES
you did not provide any info about your 3D mesh internal structure so I can not help with export. There are many ways to export the same way so pick one that is closest to your App 3D mesh representation. For example you can use:
point cloud
rotation surfaces
rectangle (QUAD) surfaces
border lines representation (non solid)
trim surface and many more ...

OpenGL 3.2 Core Sprite Batch Example?

I have been tearing my hair out for a while over this. I need an OpenGL 3.2 Core (no deprecated stuff!) way to efficiently render many sprites, using batching (no instancing).
I've seen examples that do this with geometry alone, but mine also needs to send textures to it, I don't know how to do this.
I need a well done example of it working in action. And looking at how other libs like monogame and such do it isn't much help, because all I'm interested in is the GL code, and it has to have no deprecated stuff in it.
Basically I want to be able to efficiently render thousands+ of sprites, all having textures. The texture is just a spritesheet, so I just need to tell it to render a region of that spritesheet.
I'm disappointed in the amount of material available for programmable pipeline. To the point where it seems like it'd be so much easier to just say screw it and use fixed pipeline, even though I definitely don't want to do that.
So yeah, any full examples that do what I want? Or could somebody more knowledgable write one up? :)
A lot of the examples are "oh, here's how you render 1 triangle". Well that's great, except nobody needs to render only 1 triangle/quad. And they need to be textured in addition to that!
An example that uses VBOs/VAOs/EBOs
ALSO: this means the code can't use glTexPointer and that stuff, but just in raw VBOs/VAOs...
I saw this question and decided to write a little program that does some "sprite" rendering using points and gl_PointSize. I'm not quite sure what you mean by "batching" as opposed to "instancing," but my program uses the glDrawArraysInstanced() call so that I can render multiple points without needing my VBO to be variable sized. My code also doesn't texture the sprites, but that's easy enough to add in (upload the active texture index (the one that was active during your call to glTexSubImage), to a GLSL sampler2D using glUniform1i).
Anyway, here's the program I wrote: http://litherum.blogspot.com/2013/02/sprites-in-opengl-programmable-pipeline.html Hope you can learn from it!

Is it possible rip game resources from a .smc file?

Is it possible rip game resources from a .smc file? Specifically art, music, sprites, etc. How does an emulator copy the system it emulates?
It's possible, in the sense that the information is all there in some manner. But an smc file is basically a compiled program with embedded resources, and there isn't even a standard compiler or standard format for storing the resources that you can start from.
And as far as image data goes, there is a good chance it will be in the palettized and tiled format used by the PPU, although it's also not unlikely that it will be compressed in some manner or another. But the palette will probably be almost impossible to find by static analysis, and the tile maps are probably generated from the level data rather than being explicitly stored anywhere. You may have better luck running it in an emulator and extracting the data from VRAM.
For music, the situation is even more discouraging. SNES audio is most akin to a MOD file: instruments are sampled, and then the individual samples are pitch-adjusted and mixed to generate the output sound. The SNES provides hardware to decode the instrument samples, manipulate the pitch, and mix them together, but no high-level program (i.e. no equivalent of a mod file "tracker") to play back actual songs. So you may be able to find the BRR-encoded instrument samples in the same manner you may be able to find the image tile data, but the song data can and will be formatted completely differently in different games. Again, your best luck may come from extracting the state of the APU as an SPC file and working with that.
As for your other question, see How do emulators work and how are they written? for a previous answer on that very topic.

Extract images from running 2d-game

There is a 2d-game based on Direct3D. This game has a lot of graphics and animations. What is the best way to extract animation image sequences from the running game (e.g. using memory dump)? Is there any special tools for such purposes?
Depending on what you call 'the best'
FRAPS - http://www.fraps.com/
Allows you to capture screen shots which you can edit the frames out of.
Alternatively you may be able to use graphical debugging tools like PIX (http://msdn.microsoft.com/en-us/library/bb173085(VS.85).aspx) to capture the graphical commands and pull the textures out directly (games often disable PIX support on release though).
Or, try and pull the images directly out of the files (they have to be loaded somewhere and file formats are usually pretty easy to reverse engineer).
NB: I'm assuming by 2D game you don't mean actually really mean 3D assets but 2D game play.
I don't know if it can work on full screen mode, but with a desktop screen recorder tool like CamStudio you can record the animation in uncompressed avi format.
With an extra tool for video processing you can do whatever you want with the captured frames.
there is a tool which can extract the resource files from many popular games and binary formats: Game file explorer.
Saves you the trouble of screen grabbing

Fast, Pixel Precision 2D Drawing API for Graphics App?

I woud like to create a cross-platform drawing program. The one requirement for writing my app is that I have pixel level precision over the canvas. For instance, I want to write my own line drawing algorithm rather than rely on someone elses. I do not want any form of anti-aliasing (again, pixel level control is required.) I would like the users interactions on the screen to be quick and responsive (pending my ability to write fast algorithms.)
Ideally, I would like to write this in Python, or perhaps Java as a second choice. The ability to easily make the final app cross-platform is a must. I will submit to different API's on different OS'es if necessary as long as I can write an abstraction layer around them. Any ideas?
addendum: I need the ability to draw on-screen. Drawing out to a file I've got figured out.
I just this week put together some slides and demo code for doing 2d graphics using OpenGL from python using the library pyglet. Here's a representative post: Pyglet week 2, better vertex throughput (or 3D stuff using the same basic ideas)
It is very fast (relatively speaking, for python) I have managed to get around 1,000 independently positioned and oriented objects moving around the screen, each with about 50 vertices.
It is very portable, all the code I have written in this environment works on windows and Linux and mac (and even obscure environments like Pypy) without me ever having to think about it.
Some of these posts are very old, with broken links between them. You should be able to find all the relevant posts using the 'graphics' tag.
The Pyglet library for Python might suit your needs. It lets you use OpenGL, a cross-platform graphics API. You can disable anti-aliasing and capture regions of the screen to a buffer or a file. In addition, you can use its event handling, resource loading, and image manipulation systems. You can probably also tie it into PIL (Python Image Library), and definitely Cairo, a popular cross-platform vector graphics library.
I mention Pyglet instead of pure PyOpenGL because Pyglet handles a lot of ugly OpenGL stuff transparently with no effort on your part.
A friend and I are currently working on a drawing program using Pyglet. There are a few quirks - for example, OpenGL is always double buffered on OS X, so we have to draw everything twice, once for the current frame and again for the other frame, since they are flipped whenever the display refreshes. You can look at our current progress in this subversion repository. (Splatterboard.py in trunk is the file you'll want to run.) If you're not up on using svn, I would be happy to email you a .zip of the latest source. Feel free to steal code if you look into it.
If language choice is open, a Flash file created with Haxe might have a place. Haxe is free, and a full, dynamic programming language. Then there's the related Neko, a virtual machine (like Java's, Ruby's, Parrot...) to run on Mac, Windows and Linux. Being in some ways a new improved form of Flash, naturally it can draw stuff. http://haxe.org/
QT's Canvas an QPainter are very good for this job if you'd like to use C++. and it is cross platform.
There is a python binding for QT but I've never used it.
As for Java, using SWT, pixel level manipulation of a canvas is somewhat difficult and slow so I would not recommend it. On the other hand Swing's Canvas is pretty good and responsive. I've never used the AWT option but you probably don't want to go there.
I would recommend wxPython
It's beautifully cross platform and you can get per pixel control and if you change your mind about that you can use it with libraries such as pyglet or agg.
You can find some useful examples for just what you are trying to do in the docs and demos download.

Resources