I will have to implement a WM_COPYDATA IPC between 2 applications. I have seem samples on internet, but all of them only send strings that are less than 255 characters.
I want to send a big string (more than 1k) to another process using WM_COPYDATA. Is it possible? What are the limitations? Should I send a stream instead of a string or record?
Both applications were developed by me using Delphi 2010.
There are no limitations. You can send data as large as you like, subject to available memory constraints, using WM_COPYDATA.
Related
i want to build an node-red node, which should talk to an sensor over serialport (RS485).
Here i am using the serialport library for nodejs.
But before i can put the code in the node-red node, i wanted to have a PoC running.
Therefore i wrote some small nodejs scripts and tried to get the data i wanted from the sensor.
Simple stuff is working quiet well and there is no problem with the connection to the sensor.
But i am running into a problem when i have to write multiple times. In case of the used sensor i only can request 16 Bytes of data per write request.
Since i need 32 Byte of data i have to write two times at first.
After i have received this 32 Byte, i need to extract a number which represents the available channels.
Now i have to request 32 Byte of data for each available channel.
What would be the correct way to do this?
I read through the docu but it was not obvious for me how to achieve this described procedure.
I somehow need to connect the writes depending on the data which is received (eg over the on-data-listener), but since writes are non-blocking i receive only garbage if i write more than one time.
Best regards!
PS i found some (more or less) related posts(1, 2), but they could not help with my problem
I write server that sends two types of messages: plain message (without encoding) and encrypted message (AES encryption). The transport is UDP. The message content is fixed-length header (2 bytes) and body (JSON string). The question: should I encode these messages using Base64 encoding? If so, what is the reason?
base64encoding has one reason to exist (and this one only): Make something, that is not safe for handling and/or transport in a text-based system (such as E-Mail, classic C strings) safe to do so.
UDP definitly has no such limit, so it depends on whether any other part of your application does. If not, I recommend you use the raw data.
base64 was meant to encode binary data (which is very compact) into group of 64 symbols in the ASCII table (which is less compact). base64 is very good for storing binary data inside text files, things like storing image data inside HTML document etc. I don't see any reason to use it in your case
I have bunch of records in my offcard application and I want to save them all in javacard,
The question is:
What is the best way of transferring data to Java Card?
Should I transfer all data record by record (each one with a APDU) or send all the records in just one APDU?
Of course I know the limitation size of APDU and I'm using extended APDU in order to send all data just in one extended APDU which is more than 255 bytes..
It does not matter much if you send your data in one extended length APDU or one single APDU security wise. It is however much better to send unrelated information using separate APDU's. This would make your application much more modular. Note that if you send related information using separate APDU's, you may need to keep state between those APDU's for validation purposes (e.g. you may have to send either none or all of them, or send the APDU's in specific order).
Furthermore, ISO 7816-4 only defines 2 byte status words to send back to the sender, e.g. 8A80 to indicate any error in the command data. This means that it is impossible to tell from the status word which of the records contains failure information.
Finally, there are certainly still readers and software out there that have issues handling extended length APDU's. So if your software is going to be used by other parties you may want to stick to normal length APDU's.
I have created a small wireless network using a few PIC microcontrollers and nRF24L01 wireless RF modules. One of the PICs is PIC18F46K22 and it is used as the main controller which sends commands to all other PICs. All other (slave) microcontrollers are PIC16F1454, there are 5 of them so far. These slave controllers are attached to various devices (mostly lights). The main microcontroller is used to transmit commands to those devices, such as turn lights on or off. These devices also report the status of the attached devices back to the main controller witch then displays it on an LCD screen. This whole setup is working perfectly fine.
The problem is that anybody who has these cheap nRF24L01 modules could simply listen to the commands which are being sent by the main controller and then repeat them to control the devices.
Encrypting the commands wouldn’t be helpful as these are simple instructions and if encrypted they will always look the same, and one does not need to decrypt it to be able to retransmit the message.
So how would I implement a level of security in this system?
What you're trying to do is to prevent replay attacks. The general solution to this involves two things:
Include a timestamp and/or a running message number in all your messages. Reject messages that are too old or that arrive out of order.
Include a cryptographic message authentication code in each message. Reject any messages that don't have the correct MAC.
The MAC should be at least 64 bits long to prevent brute force forgery attempts. Yes, I know, that's a lot of bits for small messages, but try to resist the temptation to skimp on it. 48 bits might be tolerable, but 32 bits is definitely getting into risky territory, at least unless you implement some kind of rate limiting on incoming messages.
If you're also encrypting your messages, you may be able to save a few bytes by using an authenticated encryption mode such as SIV that combines the MAC with the initialization vector for the encryption. SIV is a pretty nice choice for encrypting small messages anyway, since it's designed to be quite "foolproof". If you don't need encryption, CMAC is a good choice for a MAC algorithm, and is also the MAC used internally by SIV.
Most MACs, including CMAC, are based on block ciphers such as AES, so you'll need to find an implementation of such a cipher for your microcontroller. A quick Google search turned up this question on electronics.SE about AES implementations for microcontrollers, as well as this blog post titled "Fast AES Implementation on PIC18F4550". There are also small block ciphers specifically designed for microcontrollers, but such ciphers tend to be less thoroughly analyzed than AES, and may harbor security weaknesses; if you can use AES, I would. Note that many MAC algorithms (as well as SIV mode) only use the block cipher in one direction; the decryption half of the block cipher is never used, and so need not be implemented.
The timestamp or message number should be long enough to keep it from wrapping around. However, there's a trick that can be used to avoid transmitting the entire number with each message: basically, you only send the lowest one or two bytes of the number, but you also include the higher bytes of the number in the MAC calculation (as associated data, if using SIV). When you receive a message, you reconstruct the higher bytes based on the transmitted value and the current time / last accepted message number and then verify the MAC to check that your reconstruction is correct and the message isn't stale.
If you do this, it's a good idea to have the devices regularly send synchronization messages that contain the full timestamp / message number. This allows them to recover e.g. from prolonged periods of message loss causing the truncated counter to wrap around. For schemes based on sequential message numbering, a typical synchronization message would include both the highest message number sent by the device so far as well as the lowest number they'll accept in return.
To guard against unexpected power loss, the message numbers should be regularly written to permanent storage, such as flash memory. Since you probably don't want to do this after every message, a common solution is to only save the number every, say, 1000 messages, and to add a safety margin of 1000 to the saved value (for the outgoing messages). You should also design your data storage patterns to avoid directly overwriting old data, both to minimize wear on the memory and to avoid data corruption if power is lost during a write. The details of this, however, are a bit outside the scope of this answer.
Ps. Of course, the MAC calculation should also always include the identities of the sender and the intended recipient, so that an attacker can't trick the devices by e.g. echoing a message back to its sender.
guys need some insight here.
I know the definition of a protocol, being new to this c++ programming is quite a challenging
task.I am creating a Multi-threaded chat using SDL/C++, this is a learning experience for me
and now i have encounter a hump in which I need to overcome but understanding it is a little more difficult than I had thought.I need to make a chat protocol of some sort, I think...but am stump. Up until this point i have been sending messages in strings of characters.Now that am improving the application to the point where clients can register and login, I need a better way to communicating with my clients and server.
thank you.
Create objects that represent a message, then serialize the object, send it over the network, then deserialize at the other end.
For example, you could create a class called LoginMessage that contains two fields. One for a user name, and one for a password. To login, you would do something like:
LoginMessage *msg = new LoginMessage();
msg->username = "Fred";
msg->password = "you'll never guess";
char *serialized_msg = serialize(msg);
// send the bytes over the network
You would do something similar at the other end to convert the byte stream back into an object.
There are APIs for creating message objects and serializing them for you. Here are two popular ones. Both should suit your needs.
Protocol Buffers by Google
Thrift By Facebook
If you want the serialized messages to be readable, you can use YAML. Google has an API called yaml-cpp for serializing data to YAML format.
UPDATE:
Those APIs are for making your own protocol. They just handle the conversion of messages from object form to byte stream form. They do have feature for the actual transport of the messages over the network, but you don't need to use those features. How you design your protocol it up to you. But if you want to create messages by hand, you can do that too.
I'll give you some ideas for creating your own message format.
This is one way to do it.
Have the first 4 bytes of the message represent the length of the message as an unsigned integer. This is necessary to figure out where one message ends and where the next one starts. You will need to convert between host and network byte order when reading and writing to/from these four bytes.
Have the 5th byte represent the message type. For example, you could use a 1 to indicate a login request, a 2 to indicate a login response, and 3 to indicate a chat message. This byte is necessary for interpreting the meaning of the remaining bytes.
The remaining bytes would contain the message contents. For example, if it was a login message, you would encode the username and password into these bytes somehow. If it is a chat message, these bytes would contain the chat text.