threadscope functionality - haskell

Can programs be monitored while they are running (possibly piping the event log)? Or is it only possible to view event logs after execution. If the latter is the case, is there a deeper reason with respect to how the Haskell runtime works?
Edit: I don't know much about the runtime tbh, but given dflemstr's response, I was curious about how much and the ways in which performance is degraded by adding the event monitoring runtime option. I recall in RWH they mentioned that the rts has to add cost centres, but I wasn't completely sure about how expensive this sort of thing was.

The direct answer is that, no, it is not possible. And, no, there is no reason for that except that nobody has done the required legwork so far.
I think this would mainly be a matter of
Modifying ghc-events so it supports reading event logs chunk-wise and provide partial results. Maybe porting it over to attoparsec would help?
Threadscope would have to update its internal tree data structures as new data streams in.
Nothing too hard, but somebody would need to do it. I think I heard discussion about adding this feature already... So it might happen eventually.
Edit: And to make it clear, there's no real reason this would have to degrade performance beyond what you get with event log or cost centre profiling already.

If you want to monitor the performance of the application while it is running, you can for instance use the ekg package as described in this blog post. It isn't as detailed as ThreadScope, but it does the job for web services, for example.
To get live information about what the runtime is doing, you can use the dtrace program to capture dynamic events posted by some GHC runtime probes. How this is done is outlined in this wiki page. You can then use this information to put together a more coherent event log.

Related

Logging with multithreading

I have two threads running at the same time which are picking up items from the same queue and processing them. However, sometimes I get exceptions because they are trying to access the same object, when one has already picked it up. I looked up solutions online and people said to use logs to tell one thread or the other to wait. How does this work? What approach would you take to use logs?
Take a look at this link. it describes what a lock is. without knowing the language you are using I cant really be more specific.

Code instrumentation in haskell

Suppose I maintain complex application connected to external systems. One day it starts to return unexpected results for certain input and I need to find out why. It could be DNS problem, filesytem related problem, external system change, anything.
Assuming that amount of processing is extensive, before I can identify possible locations of the problem I would need to obtain detailed traces which original application does not produce.
How can I instrument existing code so that I can (for example) provide non-volatile proof (not a live debug session) that certain component or function has a bug.
This sounds like more of an architecture/best practices type question than anything Haskell-specific, unless I'm misunderstanding something.
It sounds like your application needs to use a logging system, such as hslogger. The general approach is to have each component of your code create logging messages with an attached priority. You can then have the application handle different priority levels differently, so for example critical errors could be displayed on the console, while debug and info-level errors go to logfiles.
It's sometimes useful to use Debug.Trace.traceEvent and Debug.Trace.traceEventIO instead of a logging system, particularly if you suspect a concurrency issue, as the ghc eventlog also logs information about thread spawning/switching and garbage collection. But in general it's not a substitution for an actual logging framework.
Also, you may want to make use of assert as a sanity check that "impossible" conditions really don't occur.

What were Node.js isolates? And why are they now dead?

In 0.7.0, "Experimenetal isolates support" [sic] was introduced. I never understood this besides some vague idea that they gave threading-like capabilities but without the problems of threads. And maybe were good for solving Node's debugging/error handling story.
But, nobody ever explained what they were, either in that blog, or in the first few Google results. What are isolates? Why were they introduced to Node?
This morning, a bunch of GitHub issues (2662, 2663, 2665, and probably more) were closed with the comment "isolates is dead". What happened? Why did this supposedly good idea, which from what I could tell was the headline feature for 0.7, die?
Explained here: http://groups.google.com/group/nodejs/msg/6b8b8a487d2ab817
Ben just scooped me before I could get the message sent :)
Just in case the link #isaacs postet ever breaks, here the contents:
The Isolates feature was intended to make it possible to run
child_process.fork() in a thread, rather than a full process. The
justification was to make it cheaper to spin up new child node
instances, as well as allowing for fast message-passing using shared
memory in binary addons, while retaining the semantics of node's
child_process implementation by keeping them in completely isolated v8
instances.
It was a very informative experiment, but has ultimately turned out to
cause too much instability in node's internal functionality to justify
continuing with it at this time. It requires a lot of complexity to
be added to libuv and node, and isn't likely to yield enough gains to
be worth the investment.
We're going to roll back the changes in master that were added to
support Isolates, and instead focus on Domains and other things that
promise to increase stability and make debugging easier. This change
will land in 0.7.3. It's entirely possible that we may decide to use
v8 isolates in some future version of node, but they will not be in
0.8.
If you were eagerly looking forward to using this feature, and find
yourself shocked or frustrated by this decision, please contact me
directly. It's not our intention to leave anyone stuck, and I do
understand that this feature was promised for some time. If this
causes hardship for you, let's figure out another way to get your use
cases handled.
It's never easy to back-pedal, but doing experimental things means
sometimes finding out that you were headed in the wrong direction. The
sooner we make this change, the easier it will be.
Thanks.
You can think of Isolate as an independent instance of V8 runtime. It has own memory management (GC). The name comes from Chrome execution engine where you have multiple tabs and each tab has own JavaScript environment engine. Each tab (and JS environment) has to be 'isolated' from each other, so none of the page can access another page environment (window.local or window.document). That is the reason why V8 has Isolate object, which allows it to run in parallel multiple environments (pages/tabs) independent (isolated) from each other.

does a disaster proof language exist?

When creating system services which must have a high reliability, I often end up writing the a lot of 'failsafe' mechanisms in case of things like: communications which are gone (for instance communication with the DB), what would happen if the power is lost and the service restarts.... how to pick up the pieces and continue in a correct way (and remembering that while picking up the pieces the power could go out again...), etc etc
I can imagine for not too complex systems, a language which would cater for this would be very practical. So a language which would remember it's state at any given moment, no matter if the power gets cut off, and continues where it left off.
Does this exist yet? If so, where can I find it? If not, why can't this be realized? It would seem to me very handy for critical systems.
p.s. In case the DB connection is lost, it would signal that a problem arose, and manual intervention is needed. The moment he connection is restored, it would continue where it left off.
EDIT:
Since the discussion seems to have died off let me add a few points(while waiting before I can add a bounty to the question)
The Erlang response seems to be top rated right now. I'm aware of Erlang and have read the pragmatic book by Armstrong (the principal creator). It's all very nice (although functional languages make my head spin with all the recursion), but the 'fault tolerant' bit doesn't come automatically. Far from it. Erlang offers a lot of supervisors en other methodologies to supervise a process, and restart it if necessary. However, to properly make something which works with these structures, you need to be quite the erlang guru, and need to make your software fit all these frameworks. Also, if the power drops, the programmer too has to pick up the pieces and try to recover the next time the program restarts
What I'm searching is something far simpler:
Imagine a language (as simple as PHP for instance), where you can do things like do DB queries, act on it, perform file manipulations, perform folder manipulations, etc.
It's main feature however should be: If the power dies, and the thing restarts it takes of where it left off (So it not only remembers where it was, it will remember the variable states as well). Also, if it stopped in the middle of a filecopy, it will also properly resume. etc etc.
Last but not least, if the DB connection drops and can't be restored, the language just halts, and signals (syslog perhaps) for human intervention, and then carries on where it left off.
A language like this would make a lot of services programming a lot easier.
EDIT:
It seems (judging by all the comments and answers) that such a system doesn't exist. And probably will not in the near foreseeable future due to it being (near?) impossible to get right.
Too bad.... again I'm not looking for this language (or framework) to get me to the moon, or use it to monitor someones heartrate. But for small periodic services/tasks which always end up having loads of code handling bordercases (powerfailure somewhere in the middle, connections dropping and not coming back up),...where a pause here,...fix the issues,....and continue where you left off approach would work well.
(or a checkpoint approach as one of the commenters pointed out (like in a videogame). Set a checkpoint.... and if the program dies, restart here the next time.)
Bounty awarded:
At the last possible minute when everyone was coming to the conclusion it can't be done, Stephen C comes with napier88 which seems to have the attributes I was looking for.
Although it is an experimental language, it does prove it can be done and it is a something which is worth investigating more.
I'll be looking at creating my own framework (with persistent state and snapshots perhaps) to add the features I'm looking for in .Net or another VM.
Everyone thanks for the input and the great insights.
Erlang was designed for use in Telecommunication systems, where high-rel is fundamental. I think they have standard methodology for building sets of communicating processes in which failures can be gracefully handled.
ERLANG is a concurrent functional language, well suited for distributed, highly concurrent and fault-tolerant software. An important part of Erlang is its support for failure recovery. Fault tolerance is provided by organising the processes of an ERLANG application into tree structures. In these structures, parent processes monitor failures of their children and are responsible for their restart.
Software Transactional Memory (STM) combined with nonvolatile RAM would probably satisfy the OP's revised question.
STM is a technique for implementating "transactions", e.g., sets of actions that are done effectively as an atomic operation, or not at all. Normally the purpose of STM is to enable highly parallel programs to interact over shared resources in a way which is easier to understand than traditional lock-that-resource programming, and has arguably lower overhead by virtue of having a highly optimistic lock-free style of programming.
The fundamental idea is simple: all reads and writes inside a "transaction" block are recorded (somehow!); if any two threads conflict on the these sets (read-write or write-write conflicts) at the end of either of their transactions, one is chosen as the winner and proceeds, and the other is forced to roll back his state to the beginning of the transaction and re-execute.
If one insisted that all computations were transactions, and the state at the beginning(/end) of each transaction was stored in nonvolatile RAM (NVRAM), a power fail could be treated as a transaction failure resulting in a "rollback". Computations would proceed only from transacted states in a reliable way. NVRAM these days can be implemented with Flash memory or with battery backup. One might need a LOT of NVRAM, as programs have a lot of state (see minicomputer story at end). Alternatively, committed state changes could be written to log files that were written to disk; this is the standard method used by most databases and by reliable filesystems.
The current question with STM is, how expensive is it to keep track of the potential transaction conflicts? If implementing STM slows the machine down by an appreciable amount, people will live with existing slightly unreliable schemes rather than give up that performance. So far the story isn't good, but then the research is early.
People haven't generally designed languages for STM; for research purposes, they've mostly
enhanced Java with STM (see Communications of ACM article in June? of this year). I hear MS has an experimental version of C#. Intel has an experimental version for C and C++.
THe wikipedia page has a long list. And the functional programming guys
are, as usual, claiming that the side-effect free property of functional programs makes STM relatively trivial to implement in functional languages.
If I recall correctly, back in the 70s there was considerable early work in distributed operating systems, in which processes (code+state) could travel trivally from machine to machine. I believe several such systems explicitly allowed node failure, and could restart a process in a failed node from save state in another node. Early key work was on the
Distributed Computing System by Dave Farber. Because designing languages back in the 70s was popular, I recall DCS had it had its own programming language but I don't remember the name. If DCS didn't allow node failure and restart, I'm fairly sure the follow on research systems did.
EDIT: A 1996 system which appears on first glance to have the properties you desire is
documented here.
Its concept of atomic transactions is consistent with the ideas behind STM.
(Goes to prove there isn't a lot new under the sun).
A side note: Back in in 70s, Core Memory was still king. Core, being magnetic, was nonvolatile across power fails, and many minicomputers (and I'm sure the mainframes) had power fail interrupts that notified the software some milliseconds ahead of loss of power. Using that, one could easily store the register state of the machine and shut it down completely. When power was restored, control would return to a state-restoring point, and the software could proceed. Many programs could thus survive power blinks and reliably restart. I personally built a time-sharing system on a Data General Nova minicomputer; you could actually have it running 16 teletypes full blast, take a power hit, and come back up and restart all the teletypes as if nothing happened. The change from cacophony to silence and back was stunning, I know, I had to repeat it many times to debug the power-failure management code, and it of course made great demo (yank the plug, deathly silence, plug back in...). The name of the language that did this, was of course Assembler :-}
From what I know¹, Ada is often used in safety critical (failsafe) systems.
Ada was originally targeted at
embedded and real-time systems.
Notable features of Ada include:
strong typing, modularity mechanisms
(packages), run-time checking,
parallel processing (tasks), exception
handling, and generics. Ada 95 added
support for object-oriented
programming, including dynamic
dispatch.
Ada supports run-time checks in order
to protect against access to
unallocated memory, buffer overflow
errors, off-by-one errors, array
access errors, and other detectable
bugs. These checks can be disabled in
the interest of runtime efficiency,
but can often be compiled efficiently.
It also includes facilities to help
program verification.
For these
reasons, Ada is widely used in
critical systems, where any anomaly
might lead to very serious
consequences, i.e., accidental death
or injury. Examples of systems where
Ada is used include avionics, weapon
systems (including thermonuclear
weapons), and spacecraft.
N-Version programming may also give you some helpful background reading.
¹That's basically one acquaintance who writes embedded safety critical software
I doubt that the language features you are describing are possible to achieve.
And the reason for that is that it would be very hard to define common and general failure modes and how to recover from them. Think for a second about your sample application - some website with some logic and database access. And lets say we have a language that can detect power shutdown and subsequent restart, and somehow recover from it. The problem is that it is impossible to know for the language how to recover.
Let's say your app is an online blog application. In that case it might be enough to just continue from the point we failed and all be ok. However consider similar scenario for an online bank. Suddenly it's no longer smart to just continue from the same point. For example if I was trying to withdraw some money from my account, and the computer died right after the checks but before it performed the withdrawal, and it then goes back one week later it will give me the money even though my account is in the negative now.
In other words, there is no single correct recovery strategy, so this is not something that can be implemented into the language. What language can do is to tell you when something bad happens - but most languages already support that with exception handling mechanisms. The rest is up to application designers to think about.
There are a lot of technologies that allow designing fault tolerant applications. Database transactions, durable message queues, clustering, hardware hot swapping and so on and on. But it all depends on concrete requirements and how much the end user is willing to pay for it all.
There is an experimental language called Napier88 that (in theory) has some attributes of being disaster-proof. The language supports Orthogonal Persistence, and in some implementations this extends (extended) to include the state of the entire computation. Specifically, when the Napier88 runtime system check-pointed a running application to the persistent store, the current thread state would be included in the checkpoint. If the application then crashed and you restarted it in the right way, you could resume the computation from the checkpoint.
Unfortunately, there are a number of hard issues that need to be addressed before this kind of technology is ready for mainstream use. These include figuring out how to support multi-threading in the context of orthogonal persistence, figuring out how to allow multiple processes share a persistent store, and scalable garbage collection of persistent stores.
And there is the problem of doing Orthogonal Persistence in a mainstream language. There have been attempts to do OP in Java, including one that was done by people associated with Sun (the Pjama project), but there is nothing active at the moment. The JDO / Hibernate approaches are more favoured these days.
I should point out that Orthogonal Persistence isn't really disaster-proof in the large sense. For instance, it cannot deal with:
reestablishment of connections, etc with "outside" systems after a restart,
application bugs that cause corruption of persisted data, or
loss of data due to something bringing down the system between checkpoints.
For those, I don't believe there are general solutions that would be practical.
The majority of such efforts - termed 'fault tolerance' - are around the hardware, not the software.
The extreme example of this is Tandem, whose 'nonstop' machines have complete redundancy.
Implementing fault tolerance at a hardware level is attractive because a software stack is typically made from components sourced from different providers - your high availability software application might be installed along side some decidedly shaky other applications and services on top of an operating system that is flaky and using hardware device drivers that are decidedly fragile..
But at a language level, almost all languages offer the facilities for proper error checking. However, even with RAII, exceptions, constraints and transactions, these code-paths are rarely tested correctly and rarely tested together in multiple-failure scenerios, and its usually in the error handling code that the bugs hide. So its more about programmer understanding, discipline and trade-offs than about the languages themselves.
Which brings us back to the fault tolerance at the hardware level. If you can avoid your database link failing, you can avoid exercising the dodgy error handling code in the applications.
No, a disaster-proof language does not exist.
Edit:
Disaster-proof implies perfection. It brings to mind images of a process which applies some intelligence to resolve unknown, unspecified and unexpected conditions in a logical manner. There is no manner by which a programming language can do this. If you, as the programmer, can not figure out how your program is going to fail and how to recover from it then your program isn't going to be able to do so either.
Disaster from an IT perspective can arise in so many fashions that no one process can resolve all of those different issues. The idea that you could design a language to address all of the ways in which something could go wrong is just incorrect. Due to the abstraction from the hardware many problems don't even make much sense to address with a programming language; yet they are still 'disasters'.
Of course, once you start limiting the scope of the problem; then we can begin talking about developing a solution to it. So, when we stop talking about being disaster-proof and start speaking about recovering from unexpected power surges it becomes much easier to develop a programming language to address that concern even when, perhaps, it doesn't make much sense to handle that issue at such a high level of the stack. However, I will venture a prediction that once you scope this down to realistic implementations it becomes uninteresting as a language since it has become so specific. i.e. Use my scripting language to run batch processes overnight that will recover from unexpected power surges and lost network connections (with some human assistance); this is not a compelling business case to my mind.
Please don't misunderstand me. There are some excellent suggestions within this thread but to my mind they do not rise to anything even remotely approaching disaster-proof.
Consider a system built from non-volatile memory. The program state is persisted at all times, and should the processor stop for any length of time, it will resume at the point it left when it restarts. Therefore, your program is 'disaster proof' to the extent that it can survive a power failure.
This is entirely possible, as other posts have outlined when talking about Software Transactional Memory, and 'fault tolerance' etc. Curious nobody mentioned 'memristors', as they would offer a future architecture with these properties and one that is perhaps not completely von Neumann architecture too.
Now imagine a system built from two such discrete systems - for a straightforward illustration, one is a database server and the other an application server for an online banking website.
Should one pause, what does the other do? How does it handle the sudden unavailability of it's co-worker?
It could be handled at the language level, but that would mean lots of error handling and such, and that's tricky code to get right. That's pretty much no better than where we are today, where machines are not check-pointed but the languages try and detect problems and ask the programmer to deal with them.
It could pause too - at the hardware level they could be tied together, such that from a power perspective they are one system. But that's hardly a good idea; better availability would come from a fault-tolerant architecture with backup systems and such.
Or we could use persistant message queues between the two machines. However, at some point these messages get processed, and they could at that point be too old! Only application logic can really work what to do in that circumstances, and there we are back to languages delegating to the programmer again.
So it seems that the disaster-proofing is better in the current form - uninterrupted power supplies, hot backup servers ready to go, multiple network routes between hosts, etc. And then we only have to hope that our software is bug-free!
Precise answer:
Ada and SPARK were designed for maximum fault-tolerance and to move all bugs possible to compile-time rather than runtime. Ada was designed by the US Dept of Defense for military and aviation systems, running on embedded devices in such things as airplanes. Spark is its descendant. There's another language used in the early US space program, HAL/S geared to handling HARDWARE failure and memory corruption due to cosmic rays.
Practical answer:
I've never met anyone who can code Ada/Spark. For most users the best answer is SQL variants on a DBMS with automatic failover and clustering of servers. Integrity checks guarantee safety. Something like T-SQL or PL/SQL has full transactional security, is Turing-complete, and is pretty tolerant of problems.
Reason there isn't a better answer:
For performance reasons, you can't provide durability for every program operation. If you did, the processing would slow to the speed of your fastest nonvolative storage. At best, your performance will drop by a thousand or million fold, because of how much slower ANYTHING is than CPU caches or RAM.
It would be the equivalent of going from a Core 2 Duo CPU to the ancient 8086 CPU -- at most you could do a couple hundred operations per second. Except, this would be even SLOWER.
In cases where frequent power cycling or hardware failures exist, you use something like a DBMS, which guarantees ACID for every important operation. Or, you use hardware that has fast, nonvolatile storage (flash, for example) -- this is still much slower, but if the processing is simple, this is OK.
At best your language gives you good compile-time safety checks for bugs, and will throw exceptions rather than crashing. Exception handling is a feature of half the languages in use now.
There are several commercially avaible frameworks Veritas, Sun's HA , IBMs HACMP etc. etc.
which will automatically monitor processes and start them on another server in event of failure.
There is also expensive hardware like HPs Tandem Nonstop range which can survive internal hardware failures.
However sofware is built by peoples and peoples love to get it wrong. Consider the cautionary tale of the IEFBR14 program shipped with IBMs MVS. It basically a NOP dummy program which allows the declarative bits of JCL to happen without really running a program. This is the entire original source code:-
IEFBR14 START
BR 14 Return addr in R14 -- branch at it
END
Nothing code be simpler? During its long life this program has actually acummulated a bug bug report and is now on version 4.
Thats 1 bug to three lines of code, the current version is four times the size of the original.
Errors will always creep in, just make sure you can recover from them.
This question forced me to post this text
(Its quoted from HGTTG from Douglas Adams:)
Click, hum.
The huge grey Grebulon reconnaissance ship moved silently through the black void. It was travelling at fabulous, breathtaking speed, yet appeared, against the glimmering background of a billion distant stars to be moving not at all. It was just one dark speck frozen against an infinite granularity of brilliant night.
On board the ship, everything was as it had been for millennia, deeply dark and Silent.
Click, hum.
At least, almost everything.
Click, click, hum.
Click, hum, click, hum, click, hum.
Click, click, click, click, click, hum.
Hmmm.
A low level supervising program woke up a slightly higher level supervising program deep in the ship's semi-somnolent cyberbrain and reported to it that whenever it went click all it got was a hum.
The higher level supervising program asked it what it was supposed to get, and the low level supervising program said that it couldn't remember exactly, but thought it was probably more of a sort of distant satisfied sigh, wasn't it? It didn't know what this hum was. Click, hum, click, hum. That was all it was getting.
The higher level supervising program considered this and didn't like it. It asked the low level supervising program what exactly it was supervising and the low level supervising program said it couldn't remember that either, just that it was something that was meant to go click, sigh every ten years or so, which usually happened without fail. It had tried to consult its error look-up table but couldn't find it, which was why it had alerted the higher level supervising program to the problem .
The higher level supervising program went to consult one of its own look-up tables to find out what the low level supervising program was meant to be supervising.
It couldn't find the look-up table .
Odd.
It looked again. All it got was an error message. It tried to look up the error message in its error message look-up table and couldn't find that either. It allowed a couple of nanoseconds to go by while it went through all this again. Then it woke up its sector function supervisor.
The sector function supervisor hit immediate problems. It called its supervising agent which hit problems too. Within a few millionths of a second virtual circuits that had lain dormant, some for years, some for centuries, were flaring into life throughout the ship. Something, somewhere, had gone terribly wrong, but none of the supervising programs could tell what it was. At every level, vital instructions were missing, and the instructions about what to do in the event of discovering that vital instructions were missing, were also missing.
Small modules of software — agents — surged through the logical pathways, grouping, consulting, re-grouping. They quickly established that the ship's memory, all the way back to its central mission module, was in tatters. No amount of interrogation could determine what it was that had happened. Even the central mission module itself seemed to be damaged.
This made the whole problem very simple to deal with. Replace the central mission module. There was another one, a backup, an exact duplicate of the original. It had to be physically replaced because, for safety reasons, there was no link whatsoever between the original and its backup. Once the central mission module was replaced it could itself supervise the reconstruction of the rest of the system in every detail, and all would be well.
Robots were instructed to bring the backup central mission module from the shielded strong room, where they guarded it, to the ship's logic chamber for installation.
This involved the lengthy exchange of emergency codes and protocols as the robots interrogated the agents as to the authenticity of the instructions. At last the robots were satisfied that all procedures were correct. They unpacked the backup central mission module from its storage housing, carried it out of the storage chamber, fell out of the ship and went spinning off into the void.
This provided the first major clue as to what it was that was wrong.
Further investigation quickly established what it was that had happened. A meteorite had knocked a large hole in the ship. The ship had not previously detected this because the meteorite had neatly knocked out that part of the ship's processing equipment which was supposed to detect if the ship had been hit by a meteorite.
The first thing to do was to try to seal up the hole. This turned out to be impossible, because the ship's sensors couldn't see that there was a hole, and the supervisors which should have said that the sensors weren't working properly weren't working properly and kept saying that the sensors were fine. The ship could only deduce the existence of the hole from the fact that the robots had clearly fallen out of it, taking its spare brain, which would have enabled it to see the hole, with them.
The ship tried to think intelligently about this, failed, and then blanked out completely for a bit. It didn't realise it had blanked out, of course, because it had blanked out. It was merely surprised to see the stars jump. After the third time the stars jumped the ship finally realised that it must be blanking out, and that it was time to take some serious decisions.
It relaxed.
Then it realised it hadn't actually taken the serious decisions yet and panicked. It blanked out again for a bit. When it awoke again it sealed all the bulkheads around where it knew the unseen hole must be.
It clearly hadn't got to its destination yet, it thought, fitfully, but since it no longer had the faintest idea where its destination was or how to reach it, there seemed to be little point in continuing. It consulted what tiny scraps of instructions it could reconstruct from the tatters of its central mission module.
"Your !!!!! !!!!! !!!!! year mission is to !!!!! !!!!! !!!!! !!!!!, !!!!! !!!!! !!!!! !!!!!, land !!!!! !!!!! !!!!! a safe distance !!!!! !!!!! ..... ..... ..... .... , land ..... ..... ..... monitor it. !!!!! !!!!! !!!!!..."
All of the rest was complete garbage.
Before it blanked out for good the ship would have to pass on those instructions, such as they were, to its more primitive subsidiary systems.
It must also revive all of its crew.
There was another problem. While the crew was in hibernation, the minds of all of its members, their memories, their identities and their understanding of what they had come to do, had all been transferred into the ship's central mission module for safe keeping. The crew would not have the faintest idea of who they were or what they were doing there. Oh well.
Just before it blanked out for the final time, the ship realised that its engines were beginning to give out too.
The ship and its revived and confused crew coasted on under the control of its subsidiary automatic systems, which simply looked to land wherever they could find to land and monitor whatever they could find to monitor.
Try taking an existing open source interpreted language and see if you could adapt its implementation to include some of these features. Python's default C implementation embeds an internal lock (called the GIL, Global Interpreter Lock) that is used to "handle" concurrency among Python threads by taking turns every 'n' VM instructions. Perhaps you could hook into this same mechanism to checkpoint the code state.
For a program to continue where it left off if the machine loses power, not only would it need to save state to somewhere, the OS would also have to "know" to resume it.
I suppose implementing a "hibernate" feature in a language could be done, but having that happen constantly in the background so it's ready in the event anything bad happens sounds like the OS' job, in my opinion.
It's main feature however should be: If the power dies, and the thing restarts it takes of where it left off (So it not only remembers where it was, it will remember the variable states as well). Also, if it stopped in the middle of a filecopy, it will also properly resume. etc etc.
... ...
I've looked at erlang in the past. However nice it's fault tolerant features it has... It doesn't survive a powercut. When the code restarts you'll have to pick up the pieces
If such a technology existed, I'd be VERY interested in reading about it. That said, The Erlang solution would be having multiple nodes--ideally in different locations--so that if one location went down, the other nodes could pick up the slack. If all of your nodes were in the same location and on the same power source (not a very good idea for distributed systems), then you'd be out of luck as you mentioned in a comment follow-up.
The Microsoft Robotics Group has introduced a set of libraries that appear to be applicable to your question.
What is Concurrency and Coordination
Runtime (CCR)?
Concurrency and Coordination Runtime
(CCR) provides a highly concurrent
programming model based on
message-passing with powerful
orchestration primitives enabling
coordination of data and work without
the use of manual threading, locks,
semaphores, etc. CCR addresses the
need of multi-core and concurrent
applications by providing a
programming model that facilitates
managing asynchronous operations,
dealing with concurrency, exploiting
parallel hardware and handling partial
failure.
What is Decentralized Software
Services (DSS)?
Decentralized Software Services (DSS)
provides a lightweight, state-oriented
service model that combines
representational state transfer (REST)
with a formalized composition and
event notification architecture
enabling a system-level approach to
building applications. In DSS,
services are exposed as resources
which are accessible both
programmatically and for UI
manipulation. By integrating service
composition, structured state
manipulation, and event notification
with data isolation, DSS provides a
uniform model for writing highly
observable, loosely coupled
applications running on a single node
or across the network.
Most of the answers given are general purpose languages. You may want to look into more specialized languages that are used in embedded devices. The robot is a good example to think about. What would you want and/or expect a robot to do when it recovered from a power failure?
In the embedded world, this can be implemented through a watchdog interrupt and a battery-backed RAM. I've written such myself.
Depending upon your definition of a disaster, it can range from 'difficult' to 'practicly impossible' to delegate this responsibility to the language.
Other examples given include persisting the current state of the application to NVRAM after each statement is executed. This only works so long as the computer doesn't get destroyed.
How would a language level feature know to restart the application on a new host?
And in the situation of restoring the application to a host - what if significant time had passed and assumptions/checks made previously were now invalid?
T-SQL, PL/SQL and other transactional languages are probably as close as you'll get to 'disaster proof' - they either succeed (and the data is saved), or they don't. Excluding disabling transactional isolation, it's difficult (but probably not impossible if you really try hard) to get into 'unknown' states.
You can use techniques like SQL Mirroring to ensure that writes are saved in atleast two locations concurrently before a transaction is committed.
You still need to ensure you save your state every time it's safe (commit).
If I understand your question correctly, I think that you are asking whether it's possible to guarantee that a particular algorithm (that is, a program plus any recovery options provided by the environment) will complete (after any arbitrary number of recoveries/restarts).
If this is correct, then I would refer you to the halting problem:
Given a description of a program and a finite input, decide whether the program finishes running or will run forever, given that input.
I think that classifying your question as an instance of the halting problem is fair considering that you would ideally like the language to be "disaster proof" -- that is, imparting a "perfectness" to any flawed program or chaotic environment.
This classification reduces any combination of environment, language, and program down to "program and a finite input".
If you agree with me, then you'll be disappointed to read that the halting problem is undecidable. Therefore, no "disaster proof" language or compiler or environment could be proven to be so.
However, it is entirely reasonable to design a language that provides recovery options for various common problems.
In the case of power failure.. sounds like to me: "When your only tool is a hammer, every problem looks like a nail"
You don't solve power failure problems within a program. You solve this problem with backup power supplies, batteries, etc.
If the mode of failure is limited to hardware failure, VMware Fault Tolerance claims similar thing that you want. It runs a pair of virtual machines across multiple clusters, and using what they call vLockstep, the primary vm sends all states to the secondary vm real-time, so in case of primary failure, the execution transparently flips to the secondary.
My guess is that this wouldn't help communication failure, which is more common than hardware failure. For serious high availability, you should consider distributed systems like Birman's process group approach (paper in pdf format, or book Reliable Distributed Systems: Technologies, Web Services, and Applications ).
The closest approximation appears to be SQL. It's not really a language issue though; it's mostly a VM issue. I could imagine a Java VM with these properties; implementing it would be another matter.
A quick&dirty approximation is achieved by application checkpointing. You lose the "die at any moment" property, but it's pretty close.
I think its a fundemental mistake for recovery not to be a salient design issue. Punting responsibility exclusivly to the environment leads to a generally brittle solution intolerant of internal faults.
If it were me I would invest in reliable hardware AND design the software in a way that it was able to recover automatically from any possible condition. Per your example database session maintenance should be handled automatically by a sufficiently high level API. If you have to manually reconnect you are likely using the wrong API.
As others have pointed out procedure languages embedded in modern RDBMS systems are the best you are going to get without use of an exotic language.
VMs in general are designed for this sort of thing. You could use a VM vendors (vmware..et al) API to control periodic checkpointing within your application as appropriate.
VMWare in particular has a replay feature (Enhanced Execution Record) which records EVERYTHING and allows point in time playback. Obviously there is a massive performance hit with this approach but it would meet the requirements. I would just make sure your disk drives have a battery backed write cache.
You would most likely be able to find similiar solutions for java bytecode run inside a java virtual machine. Google fault tolerant JVM and virtual machine checkpointing.
If you do want the program information saved, where would you save it?
It would need to be saved e.g. to disk. But this wouldn't help you if the disk failed, so already it's not disaster-proof.
You are only going to get a certain level of granularity in your saved state. If you want something like tihs, then probably the best approach is to define your granularity level, in terms of what constitutes an atomic operation and save state to the database before each atomic operation. Then, you can restore to the point of that level atomic operation.
I don't know of any language that would do this automatically, sincethe cost of saving state to secondary storage is extremely high. Therefore, there is a tradeoff between level of granularity and efficiency, which would be hard to define in an arbitrary application.
First, implement a fault tolerant application. One where, where, if you have 8 features and 5 failure modes, you have done the analysis and test to demonstrate that all 40 combinations work as intended (and as desired by the specific customer: no two will likely agree).
second, add a scripting language on top of the supported set of fault-tolerant features. It needs to be as near to stateless as possible, so almost certainly something non-Turing-complete.
finally, work out how to handle restoration and repair of scripting language state adapted to each failure mode.
And yes, this is pretty much rocket science.
Windows Workflow Foundation may solve your problem. It's .Net based and is designed graphically as a workflow with states and actions.
It allows for persistence to the database (either automatically or when prompted). You could do this between states/actions. This Serialises the entire instance of your workflow into the database. It will be rehydrated and execution will continue when any of a number of conditions is met (certain time, rehydrated programatically, event fires, etc...)
When a WWF host starts, it checks the persistence DB and rehydrates any workflows stored there. It then continues to execute from the point of persistence.
Even if you don't want to use the workflow aspects, you can probably still just use the persistence service.
As long as your steps were atomic this should be sufficient - especially since I'm guessing you have a UPS so could monitor for UPS events and force persistence if a power issue is detected.
If I were going about solving your problem, I would write a daemon (probably in C) that did all database interaction in transactions so you won't get any bad data inserted if it gets interrupted. Then have the system start this daemon at startup.
Obviously developing web stuff in C is quite slower than doing it in a scripting language, but it will perform better and be more stable (if you write good code of course :).
Realistically, I'd write it in Ruby (or PHP or whatever) and have something like Delayed Job (or cron or whatever scheduler) run it every so often because I wouldn't need stuff updating ever clock cycle.
Hope that makes sense.
To my mind, the concept of failure recover is, most of the time, a business problem, not a hardware or language problem.
Take an example : you have one UI Tier and one subsystem.
The subsystem is not very reliable but the client on the UI tier should percieve it as if it was.
Now, imagine that somehow your sub system crash, do you really think that the language you imagine, can think for you how to handle the UI Tier depending on this sub system ?
Your user should be explicitly aware that the subsystem is not reliable, if you use messaging to provide high reliability, the client MUST know that (if he isn't aware, the UI can just freeze waiting a response which can eventually come 2 weeks later). If he should be aware of this, this means that any abstrations to hide it will eventually leak.
By client, I mean end user. And the UI should reflect this unreliability and not hide it, a computer cannot think for you in that case.
"So a language which would remember it's state at any given moment, no matter if the power gets cut off, and continues where it left off."
"continues where it left off" is often not the correct recovery strategy. No language or environment in the world is going to attempt to guess how to recover from a particular fault automatically. The best it can do is provide you with tools to write your own recovery strategy in a way that doesn't interfere with your business logic, e.g.
Exception handling (to fail fast and still ensure consistency of state)
Transactions (to roll back incompleted changes)
Workflows (to define recovery routines that are called automatically)
Logging (for tracking down the cause of a fault)
AOP/dependency injection (to avoid having to manually insert code to do all the above)
These are very generic tools and are available in lots of languages and environments.

How to detect and debug multi-threading problems?

This is a follow up to this question, where I didn't get any input on this point. Here is the brief question:
Is it possible to detect and debug problems coming from multi-threaded code?
Often we have to tell our customers: "We can't reproduce the problem here, so we can't fix it. Please tell us the steps to reproduce the problem, then we'll fix it." It's a somehow nasty answer if I know that it is a multi-threading problem, but mostly I don't. How do I get to know that a problem is a multi-threading issue and how to debug it?
I'd like to know if there are any special logging frameworks, or debugging techniques, or code inspectors, or anything else to help solving such issues. General approaches are welcome. If any answer should be language related then keep it to .NET and Java.
Threading/concurrency problems are notoriously difficult to replicate - which is one of the reasons why you should design to avoid or at least minimize the probabilities. This is the reason immutable objects are so valuable. Try to isolate mutable objects to a single thread, and then carefully control the exchange of mutable objects between threads. Attempt to program with a design of object hand-over, rather than "shared" objects. For the latter, use fully synchronized control objects (which are easier to reason about), and avoid having a synchronized object utilize other objects which must also be synchronized - that is, try to keep them self contained. Your best defense is a good design.
Deadlocks are the easiest to debug, if you can get a stack trace when deadlocked. Given the trace, most of which do deadlock detection, it's easy to pinpoint the reason and then reason about the code as to why and how to fix it. With deadlocks, it always going to be a problem acquiring the same locks in different orders.
Live locks are harder - being able to observe the system while in the error state is your best bet there.
Race conditions tend to be extremely difficult to replicate, and are even harder to identify from manual code review. With these, the path I usually take, besides extensive testing to replicate, is to reason about the possibilities, and try to log information to prove or disprove theories. If you have direct evidence of state corruption you may be able to reason about the possible causes based on the corruption.
The more complex the system, the harder it is to find concurrency errors, and to reason about it's behavior. Make use of tools like JVisualVM and remote connect profilers - they can be a life saver if you can connect to a system in an error state and inspect the threads and objects.
Also, beware the differences in possible behavior which are dependent on the number of CPU cores, pipelines, bus bandwidth, etc. Changes in hardware can affect your ability to replicate the problem. Some problems will only show on single-core CPU's others only on multi-cores.
One last thing, try to use concurrency objects distributed with the system libraries - e.g in Java java.util.concurrent is your friend. Writing your own concurrency control objects is hard and fraught with danger; leave it to the experts, if you have a choice.
I thought that the answer you got to your other question was pretty good. But I'll emphasis these points.
Only modify shared state in a critical section (Mutual Exclusion)
Acquire locks in a set order and release them in the opposite order.
Use pre-built abstractions whenever possible (Like the stuff in java.util.concurrent)
Also, some analysis tools can detect some potential issues. For example, FindBugs can find some threading issues in Java programs. Such tools can't find all problems (they aren't silver bullets) but they can help.
As vanslly points out in a comment to this answer, studying well placed logging output can also very helpful, but beware of Heisenbugs.
For Java there is a verification tool called javapathfinder which I find it useful to debug and verify multi-threading application against potential race condition and death-lock bugs from the code.
It works finely with both Eclipse and Netbean IDE.
[2019] the github repository
https://github.com/javapathfinder
Assuming I have reports of troubles that are hard to reproduce I always find these by reading code, preferably pair-code-reading, so you can discuss threading semantics/locking needs. When we do this based on a reported problem, I find we always nail one or more problems fairly quickly. I think it's also a fairly cheap technique to solve hard problems.
Sorry for not being able to tell you to press ctrl+shift+f13, but I don't think there's anything like that available. But just thinking about what the reported issue actually is usually gives a fairly strong sense of direction in the code, so you don't have to start at main().
In addition to the other good answers you already got: Always test on a machine with at least as many processors / processor cores as the customer uses, or as there are active threads in your program. Otherwise some multithreading bugs may be hard to impossible to reproduce.
Apart from crash dumps, a technique is extensive run-time logging: where each thread logs what it's doing.
The first question when an error is reported, then, might be, "Where's the log file?"
Sometimes you can see the problem in the log file: "This thread is detecting an illegal/unexpected state here ... and look, this other thread was doing that, just before and/or just afterwards this."
If the log file doesn't say what's happening, then apologise to the customer, add sufficiently-many extra logging statements to the code, give the new code to the customer, and say that you'll fix it after it happens one more time.
Sometimes, multithreaded solutions cannot be avoided. If there is a bug,it needs to be investigated in real time, which is nearly impossible with most tools like Visual Studio. The only practical solution is to write traces, although the tracing itself should:
not add any delay
not use any locking
be multithreading safe
trace what happened in the correct sequence.
This sounds like an impossible task, but it can be easily achieved by writing the trace into memory. In C#, it would look something like this:
public const int MaxMessages = 0x100;
string[] messages = new string[MaxMessages];
int messagesIndex = -1;
public void Trace(string message) {
int thisIndex = Interlocked.Increment(ref messagesIndex);
messages[thisIndex] = message;
}
The method Trace() is multithreading safe, non blocking and can be called from any thread. On my PC, it takes about 2 microseconds to execute, which should be fast enough.
Add Trace() instructions wherever you think something might go wrong, let the program run, wait until the error happens, stop the trace and then investigate the trace for any errors.
A more detailed description for this approach which also collects thread and timing information, recycles the buffer and outputs the trace nicely you can find at:
CodeProject: Debugging multithreaded code in real time 1
A little chart with some debugging techniques to take in mind in debugging multithreaded code.
The chart is growing, please leave comments and tips to be added.
(update file at this link)
Visual Studio allows you to inspect the call stack of each thread, and you can switch between them. It is by no means enough to track all kinds of threading issues, but it is a start. A lot of improvements for multi-threaded debugging is planned for the upcoming VS2010.
I have used WinDbg + SoS for threading issues in .NET code. You can inspect locks (sync blokcs), thread call stacks etc.
Tess Ferrandez's blog has good examples of using WinDbg to debug deadlocks in .NET.
assert() is your friend for detecting race-conditions. Whenever you enter a critical section, assert that the invariant associated with it is true (that's what CS's are for). Though, unfortunately, the check might be expensive and thus not suitable for use in production environment.
I implemented the tool vmlens to detect race conditions in java programs during runtime. It implements an algorithm called eraser.
Develop code the way that Princess recommended for your other question (Immutable objects, and Erlang-style message passing). It will be easier to detect multi-threading problems, because the interactions between threads will be well defined.
I faced a thread issue which was giving SAME wrong result and was not behaving un-predictably since each time other conditions(memory, scheduler, processing load) were more or less same.
From my experience, I can say that HARDEST PART is to recognize that it is a thread issue, and BEST SOLUTION is to review the multi-threaded code carefully. Just by looking carefully at the thread code you should try to figure out what can go wrong. Other ways (thread dump, profiler etc) will come second to it.
Narrow down on the functions that are being called, and rule out what could and could not be to blame. When you find sections of code that you suspect may be causing the issue, add lots of detailed logging / tracing to it. Once the issue occurs again, inspect the logs to see how the code executed differently than it does in "baseline" situations.
If you are using Visual Studio, you can also set breakpoints and use the Parallel Stacks window. Parallel Stacks is a huge help when debugging concurrent code, and will give you the ability to switch between threads to debug them independently. More info-
https://learn.microsoft.com/en-us/visualstudio/debugger/using-the-parallel-stacks-window?view=vs-2019
https://learn.microsoft.com/en-us/visualstudio/debugger/walkthrough-debugging-a-parallel-application?view=vs-2019
I'm using GNU and use simple script
$ more gdb_tracer
b func.cpp:2871
r
#c
while (1)
next
#step
end
The best thing I can think of is to stay away from multi-threaded code whenever possible. It seems there are very few programmers who can write bug free multi threaded applications and I would argue that there are no coders beeing able to write bug free large multi threaded applications.

Resources