shared memory size beyond sysconfig limit - linux

can ftruncate be used to increase the size of shared memory block beyond the shared memory limit size given by sysconfig? How do I make it use swap in case physical memory runs out?

can ftruncate be used to increase the size of shared memory block ...
ftruncate() resizes a file. It does not resize a memory mapping of that file. So, the answer is no.
... beyond the shared memory limit size given by sysconfig?
That limit can not be breached. root user can change that limit though.
How do I make it use swap in case physical memory runs out?
Assuming it is a memory mapped file, one way is to only map parts of the file at a time, rather than the whole file. If a process uses more virtual memory than there is available physical memory the operating system is going to automatically use swapping to free some physical memory for you.

Related

Find exact physical memory usage in Ubuntu/Linux

(I'm new to Linux)
Say I've 1300 MB memory, on a Ubuntu machine. OS and other default programs consumes 300 MB memory and 1000 MB is free for my own applications.
I installed my application and I could configure it to use 700 MB memory, when the application starts.
However I couldn't verify its actual memory usage. Even I disabled swap space.
The "VIRT" value shows a huge value and "RES", "SHR", "%MEM" shows very less value.
It is difficult to find actual physical memory usage, similar to "Resource monitor" in Windows, which will say my application is using 700 MB memory.
Is there any way to find actual physical memory in Ubuntu/Linux ?
TL;DR - Virtual memory is complicated.
The best measure of a Linux processes current usage of physical memory is RES.
The RES value represents the sum of all of the processes pages that are currently resident in physical memory. It includes resident code pages and resident data pages. It also includes shared pages (SHR) that are currently RAM resident, though these pages cannot be exclusively ascribed to >>this<< process.
The VIRT value is actually the sum of all notionally allocated pages for the process, and it includes pages that are currently RAM resident, pages that are currently swapped to disk.
See https://stackoverflow.com/a/56351211/1184752 for another explanation.
Note that RES is giving you (roughly) instantaneous RAM usage. That is what you asked about ...
The "actual" memory usage over time is more complicated because the OS's virtual memory subsystem is typically be swapping pages in and out according to demand. So, for example, some of your application's pages may not have been accesses recently, and the OS may then swap them out (to swap space) to free up RAM for other pages required by your application ... or something else.
The VIRT value while actually representing virtual address space, is a good approximation of total (virtual) memory usage. However, it may be an over-estimate:
Some pages in a processes address space are shared between multiple processes. This includes read-only code segments, pages shared between parent and child processes between vfork and exec, and shared memory segments created using mmap.
Some pages may be set to have illegal access (e.g. for stack red-zones) and may not be backed by either RAM or swap device pages.
Some pages of the address space in certain states may not have been committed to either RAM or disk yet ... depending on how the virtual memory system is implemented. (Consider the case where a process requests a huge memory segment and neither reads from it or writes to it. It is possible that the virtual memory implementation will not allocate RAM pages until the first read or write in the page. And if you use lazy swap reservation, swap pages not be committed either. But beware that you can get into trouble with lazy swap reservation.)
VIRT can also be under-estimate because the OS usually reserves swap space for all pages ... whether they are currently swapped in or swapped out. So if you count the RAM and swap versions of a given page as separate units of storage, VIRT usually underestimates the total storage used.
Finally, if your real goal is to limit your application to using at most
700 MB (of virtual address space) then you can use ulimit -v ... to do this. If the application tries to request memory beyond its limit, the request fails.

Where does virtual memory exist in linux?

As program is stored on flash/disk. For it execution, program is loaded into virtual memory and is mapped to RAM by virtual manager. During its execution process is in RAM. Then where does virtual memory exist (where it has all .text, .data, .stack, .heap)?
The virtual memory is a view of the RAM plus maybe some swap space provided by a virtual memory manager. Modern OSs have virtual memory managers and provide virtual memory to processes so that the executing program can behave as if it had a contiguous address space whose size is not limited by the actual RAM. The pages or blocks making up the virtual memory can be mapped anywhere in the RAM, so that contiguos virtual pages need to be stored in contiguos RAM areas. Or they can be swapped out to page space or swap space, waiting there until needed, whereupon they're read by the OS and mapped to some RAM page.
When you say
During its execution process is in RAM.
This is not entirely correct. Some or all memory pages that belong to the process may be swapped out, as explained.
One more word concerning the answers and comments that say that "virtual" means it doesn't exist. This makes no sense. On the contrary, according to Webster:
being such in essence or effect ...
Hence virtual memory is something (therefore, it exists!) that behaves as if it were memory.
Virtual memory is just like an illusion of RAM. It uses paging to acquire additional RAM that could be used by the processes in operating system.
Virtual memory means memory you can access with "normal" momory access methods, although it isn't clear where the data is actually stored.
It may be
actually in RAM
in a swap area
in another file (memory mapped file)
and access to it will be handled appropriately.
It is a layer of, well, virtualization so that you as a programmer don't have to worry about where the data is actually put.
The original purpose was mainly to be able to provide more memory to processes than we actually have and to extend it with means of swap space, but there are even more:
The OS is free to use the RAM for whatever it seems necessary, e. g. caching. Under some circumstances, it may be more effective to use RAM for cache than for holding parts of a program which hasn't been used for a long time.
Provide additional memory to a program when it requests it: if you call malloc(), the program's library may request the OS to provide a part of memory which can be attached seamlessly into the address space.
Avoid stack overflow: if the stack grows larger and larger, the respective memory section may be extended as well transparently so that the program won't have to worry about it.
A system can even do "overcommitment" of memory: if a process requests a large amount of memory, the OS may say "yes, ok", i. e. provide the memory to the program. That means in the first place "allow the program to access a certain address space area", but this address space is not immediately backed by memory. Only as soon as the program accesses this memory the mapping will be done, and if this cannot be fulfilled, the program is crashed by the Out of emory killer (at least, under Linux).
All this works by page-wise (1 page = 4 kiB) assignment of physical memory to a program, viewed via the program's address space, and this in the amount and frequency as it is needed.

Increase of virtual memory without increse of VmSize

I searched for my problem in Google and at this site but i still don't understand the solution.
I have piece of MPI program which RECV some data. Program crashes on big arrays with error of insufficient virtual memory, and so i started to consider /proc/self/status file.
Before MPI_RECV it was:
Name: model.exe
VmPeak: 841640 kB
VmSize: 841640 kB
VmHWM: 15100 kB
VmRSS: 15100 kB
VmData: 760692 kB
And after:
Name: model.exe
VmPeak: 841640 kB
VmSize: 841640 kB
VmHWM: 719980 kB
VmRSS: 719980 kB
VmData: 760692 kB
I test it on Ubuntu and through System Monitor i saw this memory increasing. But i was confused that there are no changes in VmSize(and VmPeak) parameters.
And the question is - what is the indicator of real memory usage?
Does it mean, that true indicator is VmRSS? (and VmSize is only allocated but still not used memory)
(The possible solution to your problem is the last paragraph)
Memory allocation on most modern operating systems with virtual memory is a two-phase process. First, a portion of the virtual address space of the process is reserved and the virtual memory size of the process (VmSize) increases accordingly. This creates entries in the so-called process page table. Pages are initially not associated with phyiscal memory frames, i.e. no physical memory is actually used. Whenever some part of this allocated portion is actually read from or written to, a page fault occurs and the operating system installs (maps) a free page from the physical memory. This increases the resident set size of the process (VmRSS). When some other process needs memory, the OS might store the content of some infrequently used page (the definition of "infrequently used page" is highly implementation-dependent) to some persistent storage (hard drive in most cases, or generally to the swap device) and then unmap up. This process decreases the RSS but leaves VmSize intact. If this page is later accessed, a page fault would again occur and it will be brought back. The virutal memory size only decreases when virtual memory allocations are freed. Note that VmSize also counts for memory mapped files (i.e. the executable file and all shared libraries it links to or other explicitly mapped files) and shared memory blocks.
There are two generic types of memory in a process - statically allocated memory and heap memory. The statically allocated memory keeps all constants and global/static variables. It is part of the data segment, whose size is shown by the VmData metric. The data segment also hosts part of the program heap, where dynamic memory is being allocated. The data segment is continuous, i.e. it starts at a certain location and grows upwards towards the stack (which starts at a very high address and then grows downwards). The problem with the heap in the data segment is that it is managed by a special heap allocator that takes care of subdividing the contiguous data segment into smaller memory chunks. On the other side, in Linux dynamic memory can also be allocated by directly mapping virtual memory. This is usually done only for large allocations in order to conserve memory, since it only allows memory in multiples of the page size (usually 4 KiB) to be allocated.
The stack is also an important source of heavy memory usage, especially if big arrays are allocated in the automatic (stack) storage. The stack starts near the very top of the usable virtual address space and grows downwards. In some cases it could reach the top of the data segment or it could reach the end of some other virtual allocation. Bad things happen then. The stack size is accounted in the VmStack metric and also in the VmSize.
One can summarise it as so:
VmSize accounts for all virtual memory allocations (file mappings, shared memory, heap memory, whatever memory) and grows almost every time new memory is being allocated. Almost, because if the new heap memory allocation is made in the place of a freed old allocation in the data segment, no new virtual memory would be allocated. It decreses whenever virtual allocations are being freed. VmPeak tracks the max value of VmSize - it could only increase in time.
VmRSS grows as memory is being accessed and decreases as memory is paged out to the swap device.
VmData grows as the data segment part of the heap is being utilised. It almost never shrinks as current heap allocators keep the freed memory in case future allocations need it.
If you are running on a cluster with InfiniBand or other RDMA-based fabrics, another kind of memory comes into play - the locked (registered) memory (VmLck). This is memory which is not allowed to be paged out. How it grows and shrinks depends on the MPI implementation. Some never unregister an already registered block (the technical details about why are too complex to be described here), others do so in order to play better with the virtual memory manager.
In your case you say that you are running into a virtual memory size limit. This could mean that this limit is set too low or that you are running into an OS-imposed limits. First, Linux (and most Unixes) have means to impose artificial restrictions through the ulimit mechanism. Running ulimit -v in the shell would tell you what the limit on the virtual memory size is in KiB. You can set the limit using ulimit -v <value in KiB>. This only applies to processes spawned by the current shell and to their children, grandchilren and so on. You need to instruct mpiexec (or mpirun) to propagate this value to all other processes, if they are to be launched on remote nodes. if you are running your program under the control of some workload manager like LSF, Sun/Oracle Grid Engine, Torque/PBS, etc., there are job parameters which control the virtual memory size limit. And last but not least, 32-bit processes are usually restricted to 2 GiB of usable virtual memory.

what is the size limit for mmap

I am using mmap() to map a shared memory object to a process. My question has two parts:
1) what is the size limit for mmap() to a linux process? (is there such limit?)
2) after the process running a while, I think the process virtual memory address space will be somehow fragmented. Will this impact the max size I can do mmap() in this process?
The linux kernel used is 2.6.27. The size of the shared memory object is around 32MB. I am trying to access what is the possibility that mmap() fails with such shared memory object due to no enough virtual address space.
There is no restriction on mmap size but would depend on the existing address space used by the given process. But it is highly suggested that you dont mmap to a large contiguous virtual address space. Another suggestion would be to use the mmap "just-in-time" when a specific physical address (or a device address) is accessed and unmap once done
/proc/sys/vm/overcommit_memory controls the maximum on Linux
I have explained this in detail at: maximum memory which malloc can allocate
Basically, the value of 1 allows arbitrary virtual allocations, while 0 and 2 have more complicated limit calculations.

Allocating memory for process in linux

Dear all, I am using Redhat linux ,How to set maximum memory for particular process. For eg i have to allocate maximum memory usage to eclipse alone .Is it possible to allocate like this.Give me some solutions.
ulimit -v 102400
eclipse
...gives eclipse 100MiB of memory.
You can't control memory usage; you can only control virtual memory size, not the amount of actual memory used, as that is extremely complicated (perhaps impossible) to know for a single process on an operating system which supports virtual memory.
Not all memory used appears in the process's virtual address space at a given instant, for example kernel usage, and disc caching. A process can change which pages it has mapped in as often as it likes (e.g. via mmap() ). Some of a process's address space is also mapped in, but not actually used, or is shared with one or more other processes. This makes measuring per-process memory usage a fairly unachievable goal in practice.
And putting a cap on the VM size is not a good idea either, as that will result in the process being killed if it attempts to use more.
The right way of doing this in this case (for a Java process) is to set the heap maximum size (via various well-documented JVM startup options). However, experience suggests that you should not set it less than 1Gb.

Resources