Is it possible to change number of threads during program execution - multithreading

I'm running few openMP programs. Is it possible to change the number of threads during the program execution. For example, if a program takes 70sec to execute using default number of threads, can I change that number say after 30 sec.

Yes, you can certainly use omp_set_num_threads() to dynamically change the number of threads each time through your (say) iteration loop, and use that plus timing measurements to adaptively choose the number of cores you're using.

You can always create a new thread. A better question you should ask yourself is if multi-threading will benefit you. Remember, just creating new threads will not speed your program up and in many cases, can actually cause more harm than good (race-conditions, deadlocks etc). Make sure you have an understanding of how threading works before jumping into it, which judging by your question, you do not. Threading is a manly task, it puts the hair in your chest, but takes it off of your head!
http://www.inf.uni-konstanz.de/dbis/teaching/ss06/os/ch4.pdf

Related

Thread synchronisation for very short tasks

I have a C++ application running on winapi. Portability is not an issue. All I want is maximum performance. I have a basic understanding of multithreading and synchronization issues, but limited experience with the multitude of options ranging from winapi over C++ threads to third party libraries.
In the performance critical core of my application I identified a loop, which could be parallelized. I managed to split the loop into 4 parts which do not depend on each other. I would like to delegate the job to 4 threads running in parallel. The main thread should wait until all 4 threads have done their job, before it continues.
Sounds very simple. However, currently the loop takes only about 10 microseconds when running on one thread. I'm afraid that synchronization methods which cause a switch to the kernel (events, mutexes, etc.) would produce more overhead than the parallelization could save. SRWLocks + condition variables claim to be very lightweight, but I didn't find a way to solve my synchronization with these tools.
Of course I could test all kinds of synchronization APIs, but I'm sure this has been done before.
So my question is: Is there a reasonable way to synchronize very short tasks and if so, what are the appropriate tools?
If you simply need to wait for threads to complete you would use WaitForMultipleObjects on the thread handles. The other direct option would be to use a synchronization barrier, a primitive that allows a group of threads to halt until all members of the group have reached the barrier, but that is generally for the case where there is more work for the spawned threads to perform after being released.
Your question of whether this would actually be of benefit in your particular case is one that can only be answered through implementation and timing. And note that if you are going to perform this testing it should be done on a release build with optimizations enabled. It may well be the case that if the amount of work to perform is short enough that the time involved in thread management dwarfs any benefit.
The update algorithm consists of two steps. Each of these steps can be applied to the knots in arbitrary order, but step 1 must be completed before step 2 can start. I can portion the whole net into four (or more) parts and delegate each part to a separate thread. My problem is: Each thread has to pause after step 1 and wait until all threads have finished their job. Then each thread makes step 2, wait for completion of the other threads and so on.
You want to break the work into a large number of small chunks and have a fixed pool of threads take chunks of work. Do not make 8 threads on an 8 core machine and split the work into 8 chunks. That algorithm will work poorly if, for one reason or another, only 7 of those cores winds up doing work for you. Your algorithm will need twice as long as the second half of the time only one core is working.
The easy way is to have an extra dispatch thread. Just keep a "work unit" count somewhere protected by a mutex. When a thread finishes a work unit, have it decrement the "work unit" count. When it hits zero, broadcast a condition variable. That will wake the dispatch thread which will then do whatever it takes to get the worker threads going again. It can start them by setting the "work unit" count to the right level and broadcasting another condition variable that the worker threads wait for.
You can also just keep a count of which node needs to be done next and the number of nodes currently doing work. That will require synchronization after each thread though (to figure out which node to do next) and it may make more sense to have each thread grab some number of nodes, iterate over them, and then synchronize to grab another few nodes.
Avoid breaking the work into large chunks early. That can lead to the problem where you have 8 cores but 2 large work units left at some point. Remember, many modern CPUs run their cores at different speeds based on temperature and power measurements.

should I create threads before hand to save time?

I am using python 2.7 .I am using multi-threading.Now if a thread dies I again
create one to compensate for it.So should I create a lot of threads before hand and store them
and use from them when one or more existing threads die or should I create one when some thread dies??
Which is more efficient in terms of time ??
When you say a thread "dies", do you mean you intentionally terminate it or it fails due to error?
If you're intentionally terminating it and you're worried about the time required to spawn a new thread, why not keep the thread persistent and simply have it do the job that the new thread would have done? This is a pretty standard approach - maintain a pool of "worker" threads and have a work queue with pending items to execute. They all run an identical loop which is to pull an item off the queue and execute it. These items can be objects with methods which contain the code to execute if it's convenient to work that way - if the tasks are all very similar then it might be easier to put the code into the thread's own function instead.
If you're talking about threads failing due to error, I wouldn't have imagined this was common enough to worry about it. If it is, you probably need to look at making your code more robust.
In either case, spawning a thread on most systems should be a lightweight activity - a lot more lightweight than spawning a whole new process, for example. As a result, I really wouldn't worry about keeping a pool of threads in reserve to use - that really sounds like early optimisation to me.
Even if spawning threads were slow, consider what you would be doing by spawning threads in advance - you would be taking up more memory (some memory in the OS to keep track of a the thread, some in Python for the objects that it uses to track the thread), although not a great deal; you'd also be spending more time at the start of your program creating all these threads. So, you might save a little time while you were running, but instead your program takes significantly longer to start. That doesn't sound like a sensible trade-off to me unless the speed and latency of your code is absolutely critical while it's running, and if speed is that critical then I'm not sure a pure Python solution is the right approach anyway. Something like C/C++ is going to give you better control of scheduling, at the expense of much more complexity.
In summary: seriously, don't worry about it, just spawn threads as you need them. Trust me, there will be much bigger speed problems elsewhere in your code which are much more deserving of your time.

Definition of Multi-threading

Not really programming related this question, but I still hope it fits somehow here :).
I wrote the following sentence in my work:
Mulitthreading refers to the ability of an OS to subdivide an application into
threads, where each of the them are capable to execute independently.
I was told, that this definition of thread is too narrow. I am not really sure why this is the case, could somebody be so kind to explain me what I missed?
Thank you
Usually, it is the application that decides when to create threads, not the OS. Also, you may want to mention that threads share address space, while each process has its own.
A thread fundamentally, is a saved execution context - a set of saved registers and a stack, that you can resume and continue execution of. This thread can be executed on a processor (these days, many machines of course can execute multiple threads at the same time).
The critical aspect of "multi-threading" is, that an operating system can emulate execution of many threads at the same time, by preempting (stopping) a thread once it has run for a certain amount of time (a "quantum"), then scheduling another thread to run, based on a certain algorithm that is OS-specific.

Can a multi-threaded program ever be deterministic?

Normally it is said that multi threaded programs are non-deterministic, meaning that if it crashes it will be next to impossible to recreate the error that caused the condition. One doesn't ever really know what thread is going to run next, and when it will be preempted again.
Of course this has to do with the OS thread scheduling algorithm and the fact that one doesn't know what thread is going to be run next, and how long it will effectively run.
Program execution order also plays a role as well, etc...
But what if you had the algorithm used for thread scheduling and what if you could know when what thread is running, could a multi threaded program then become "deterministic", as in, you'll be able to reproduce a crash?
Knowing the algorithm will not actually allow you to predict what will happen when. All kinds of delays that happen in the execution of a program or thread are dependent on environmental conditions such as: available memory, swapping, incoming interrupts, other busy tasks, etc.
If you were to map your multi-threaded program to a sequential execution, and your threads in themselves behave deterministically, then your whole program could be deterministic and 'concurrency' issues could be made reproducible. Of course, at that point they would not be concurrency issues any more.
If you would like to learn more, http://en.wikipedia.org/wiki/Process_calculus is very interesting reading.
My opinion is: technically no (but mathematically yes). You can write deterministic threading algorithm, but it will be extremely hard to predict state of the application after some sensible amount of time that you can treat it is non-deterministic.
There are some tools (in development) that will try to create race-conditions in a somewhat predictable manner but this is about forward-looking testing, not about reconstructing a 'bug in the wild'.
CHESS is an example.
It would be possible to run a program on a virtual multi-threaded machine where the allocation of virtual cycles to each thread was done via some entirely deterministic process, possibly using a pseudo-random generator (which could be seeded with a constant before each program run). Another, possibly more interesting, possibility would be to have a virtual machine which would alternate between running threads in 'splatter' mode (where almost any variable they touch would have its value become 'unknown' to other threads) and 'cleanup' mode (where results of operations with known operands would be visible and known to other threads). I would expect the situation would probably be somewhat analogous to hardware simulation: if the output of every gate is regarded as "unknown" between its minimum and maximum propagation times, but the simulation works anyway, that's a good indication the design is robust, but there are many useful designs which could not be constructed to work in such simulations (the states would be essentially guaranteed to evolve into a valid combination, though one could not guarantee which one). Still, it might be an interesting avenue of exploration, since large parts of many programs could be written to work correctly even in a 'splatter mode' VM.
I don't think it is practicable. To enforce a specific thread interleaving we require to place locks on shared variables, forcing the threads to access them in a specific order. This would cause severe performance degradation.
Replaying concurrency bugs is usually handled by record&replay systems. Since the recording of such large amounts of information also degrades performance, the most recent systems do partial logging and later complete the thread interleavings using SMT solving. I believe that the most recent advance in this type of systems is Symbiosis (published in this year's PLDI conference). Tou can find open source implementations in this URL:
http://www.gsd.inesc-id.pt/~nmachado/software/Symbiosis_Tutorial.html
This is actually a valid requirement in many systems today which want to execute tasks parallelly but also want some determinism from time to time.
For example, a mobile company would want to process subscription events of multiple users parallelly but would want to execute events of a single user one at a time.
One solution is to of course write everything to get executed on a single thread. Another solution is deterministic threading. I have written a simple library in Java that can be used to achieve the behavior I have described in the above example. Take a look at this- https://github.com/mukulbansal93/deterministic-threading.
Now, having said that, the actual allocation of CPU to a thread or process is in the hands of the OS. So, it is possible that the threads get the CPU cycles in a different order every time you run the same program. So, you cannot achieve the determinism in the order the threads are allocated CPU cycles. However, by delegating tasks effectively amongst threads such that sequential tasks are assigned to a single thread, you can achieve determinism in overall task execution.
Also, to answer your question about the simulation of a crash. All modern CPU scheduling algorithms are free from starvation. So, each and every thread is bound to get guaranteed CPU cycles. Now, it is possible that your crash was a result of the execution of a certain sequence of threads on a single CPU. There is no way to rerun that same execution order or rather the same CPU cycle allocation order. However, the combination of modern CPU scheduling algorithms being starvation-free and Murphy's law will help you simulate the error if you run your code enough times.
PS, the definition of enough times is quite vague and depends on a lot of factors like execution cycles need by the entire program, number of threads, etc. Mathematically speaking, a crude way to calculate the probability of simulating the same error caused by the same execution sequence is on a single processor is-
1/Number of ways to execute all atomic operations of all defined threads
For instance, a program with 2 threads with 2 atomic instructions each can be allocated CPU cycles in 4 different ways on a single processor. So probability would be 1/4.
Lots of crashes in multithreaded programs have nothing to do with the multithreading itself (or the associated resource contention).
Normally it is said that multi threaded programs are non-deterministic, meaning that if it crashes it will be next to impossible to recreate the error that caused the condition.
I disagree with this entirely, sure multi-threaded programs are non-deterministic, but then so are single-threaded ones, considering user input, message pumps, mouse/keyboard handling, and many other factors. A multi-threaded program usually makes it more difficult to reproduce the error, but definitely not impossible. For whatever reasons, program execution is not completely random, there is some sort of repeatability (but not predictability), I can usually reproduce multi-threaded bugs rather quickly in my apps, but then I have lots of verbose logging in my apps, for the end users' actions.
As an aside, if you are getting crashes, can't you also get crash logs, with call stack info? That will greatly aid in the debugging process.

What kinds of applications need to be multi-threaded?

What are some concrete examples of applications that need to be multi-threaded, or don't need to be, but are much better that way?
Answers would be best if in the form of one application per post that way the most applicable will float to the top.
There is no hard and fast answer, but most of the time you will not see any advantage for systems where the workflow/calculation is sequential. If however the problem can be broken down into tasks that can be run in parallel (or the problem itself is massively parallel [as some mathematics or analytical problems are]), you can see large improvements.
If your target hardware is single processor/core, you're unlikely to see any improvement with multi-threaded solutions (as there is only one thread at a time run anyway!)
Writing multi-threaded code is often harder as you may have to invest time in creating thread management logic.
Some examples
Image processing can often be done in parallel (e.g. split the image into 4 and do the work in 1/4 of the time) but it depends upon the algorithm being run to see if that makes sense.
Rendering of animation (from 3DMax,etc.) is massively parallel as each frame can be rendered independently to others -- meaning that 10's or 100's of computers can be chained together to help out.
GUI programming often helps to have at least two threads when doing something slow, e.g. processing large number of files - this allows the interface to remain responsive whilst the worker does the hard work (in C# the BackgroundWorker is an example of this)
GUI's are an interesting area as the "responsiveness" of the interface can be maintained without multi-threading if the worker algorithm keeps the main GUI "alive" by giving it time, in Windows API terms (before .NET, etc) this could be achieved by a primitive loop and no need for threading:
MSG msg;
while(GetMessage(&msg, hwnd, 0, 0))
{
TranslateMessage(&msg);
DispatchMessage(&msg);
// do some stuff here and then release, the loop will come back
// almost immediately (unless the user has quit)
}
Servers are typically multi-threaded (web servers, radius servers, email servers, any server): you usually want to be able to handle multiple requests simultaneously. If you do not want to wait for a request to end before you start to handle a new request, then you mainly have two options:
Run a process with multiple threads
Run multiple processes
Launching a process is usually more resource-intensive than lauching a thread (or picking one in a thread-pool), so servers are usually multi-threaded. Moreover, threads can communicate directly since they share the same memory space.
The problem with multiple threads is that they are usually harder to code right than multiple processes.
There are really three classes of reasons that multithreading would be applied:
Execution Concurrency to improve compute performance: If you have a problem that can be broken down into pieces and you also have more than one execution unit (processor core) available then dispatching the pieces into separate threads is the path to being able to simultaneously use two or more cores at once.
Concurrency of CPU and IO Operations: This is similar in thinking to the first one but in this case the objective is to keep the CPU busy AND also IO operations (ie: disk I/O) moving in parallel rather than alternating between them.
Program Design and Responsiveness: Many types of programs can take advantage of threading as a program design benefit to make the program more responsive to the user. For example the program can be interacting via the GUI and also doing something in the background.
Concrete Examples:
Microsoft Word: Edit document while the background grammar and spell checker works to add all the green and red squiggle underlines.
Microsoft Excel: Automatic background recalculations after cell edits
Web Browser: Dispatch multiple threads to load each of the several HTML references in parallel during a single page load. Speeds page loads and maximizes TCP/IP data throughput.
These days, the answer should be Any application that can be.
The speed of execution for a single thread pretty much peaked years ago - processors have been getting faster by adding cores, not by increasing clock speeds. There have been some architectural improvements that make better use of the available clock cycles, but really, the future is taking advantage of threading.
There is a ton of research going on into finding ways of parallelizing activities that we traditionally wouldn't think of parallelizing. Even something as simple as finding a substring within a string can be parallelized.
Basically there are two reasons to multi-thread:
To be able to do processing tasks in parallel. This only applies if you have multiple cores/processors, otherwise on a single core/processor computer you will slow the task down compared to the version without threads.
I/O whether that be networked I/O or file I/O. Normally if you call a blocking I/O call, the process has to wait for the call to complete. Since the processor/memory are several orders of magnitude quicker than a disk drive (and a network is even slower) it means the processor will be waiting a long time. The computer will be working on other things but your application will not be making any progress. However if you have multiple threads, the computer will schedule your application and the other threads can execute. One common use is a GUI application. Then while the application is doing I/O the GUI thread can keep refreshing the screen without looking like the app is frozen or not responding. Even on a single processor putting I/O in a different thread will tend to speed up the application.
The single threaded alternative to 2 is to use asynchronous calls where they return immediately and you keep controlling your program. Then you have to see when the I/O completes and manage using it. It is often simpler just to use a thread to do the I/O using the synchronous calls as they tend to be easier.
The reason to use threads instead of separate processes is because threads should be able to share data easier than multiple processes. And sometimes switching between threads is less expensive than switching between processes.
As another note, for #1 Python threads won't work because in Python only one python instruction can be executed at a time (known as the GIL or Global Interpreter Lock). I use that as an example but you need to check around your language. In python if you want to do parallel calculations, you need to do separate processes.
Many GUI frameworks are multi-threaded. This allows you to have a more responsive interface. For example, you can click on a "Cancel" button at any time while a long calculation is running.
Note that there are other solutions for this (for example the program can pause the calculation every half-a-second to check whether you clicked on the Cancel button or not), but they do not offer the same level of responsiveness (the GUI might seem to freeze for a few seconds while a file is being read or a calculation being done).
All the answers so far are focusing on the fact that multi-threading or multi-processing are necessary to make the best use of modern hardware.
There is however also the fact that multithreading can make life much easier for the programmer. At work I program software to control manufacturing and testing equipment, where a single machine often consists of several positions that work in parallel. Using multiple threads for that kind of software is a natural fit, as the parallel threads model the physical reality quite well. The threads do mostly not need to exchange any data, so the need to synchronize threads is rare, and many of the reasons for multithreading being difficult do therefore not apply.
Edit:
This is not really about a performance improvement, as the (maybe 5, maybe 10) threads are all mostly sleeping. It is however a huge improvement for the program structure when the various parallel processes can be coded as sequences of actions that do not know of each other. I have very bad memories from the times of 16 bit Windows, when I would create a state machine for each machine position, make sure that nothing would take longer than a few milliseconds, and constantly pass the control to the next state machine. When there were hardware events that needed to be serviced on time, and also computations that took a while (like FFT), then things would get ugly real fast.
Not directly answering your question, I believe in the very near future, almost every application will need to be multithreaded. The CPU performance is not growing that fast these days, which is compensated for by the increasing number of cores. Thus, if we will want our applications to stay on the top performance-wise, we'll need to find ways to utilize all your computer's CPUs and keep them busy, which is quite a hard job.
This can be done via telling your programs what to do instead of telling them exactly how. Now, this is a topic I personally find very interesting recently. Some functional languages, like F#, are able to parallelize many tasks quite easily. Well, not THAT easily, but still without the necessary infrastructure needed in more procedural-style environments.
Please take this as additional information to think about, not an attempt to answer your question.
The kind of applications that need to be threaded are the ones where you want to do more than one thing at once. Other than that no application needs to be multi-threaded.
Applications with a large workload which can be easily made parallel. The difficulty of taking your application and doing that should not be underestimated. It is easy when your data you're manipulating is not dependent upon other data but v. hard to schedule the cross thread work when there is a dependency.
Some examples I've done which are good multithreaded candidates..
running scenarios (eg stock derivative pricing, statistics)
bulk updating data files (eg adding a value / entry to 10,000 records)
other mathematical processes
E.g., you want your programs to be multithreaded when you want to utilize multiple cores and/or CPUs, even when the programs don't necessarily do many things at the same time.
EDIT: using multiple processes is the same thing. Which technique to use depends on the platform and how you are going to do communications within your program, etc.
Although frivolous, games, in general are becomming more and more threaded every year. At work our game uses around 10 threads doing physics, AI, animation, redering, network and IO.
Just want to add that caution must be taken with treads if your sharing any resources as this can lead to some very strange behavior, and your code not working correctly or even the threads locking each other out.
mutex will help you there as you can use mutex locks for protected code regions, a example of protected code regions would be reading or writing to shared memory between threads.
just my 2 cents worth.
The main purpose of multithreading is to separate time domains. So the uses are everywhere where you want several things to happen in their own distinctly separate time domains.
HERE IS A PERFECT USE CASE
If you like affiliate marketing multi-threading is essential. Kick the entire process off via a multi-threaded application.
Download merchant files via FTP, unzipping the files, enumerating through each file performing cleanup like EOL terminators from Unix to PC CRLF then slam each into SQL Server via Bulk Inserts then when all threads are complete create the full text search indexes for a environmental instance to be live tomorrow and your done. All automated to kick off at say 11:00 pm.
BOOM! Fast as lightening. Heck you have so much time left you can even download merchant images locally for the products you download, save the images as webp and set the product urls to use local images.
Yep I did it. Wrote it in C#. Works like a charm. Purchase a AMD Ryzen Threadripper 64-core with 256gb memory and fast drives like nvme, get lunch come back and see it all done or just stay around and watch all cores peg to 95%+, listen to the pc's fans kick, warm up the room and the look outside as the neighbors lights flicker from the power drain as you get shit done.
Future would be to push processing to GPU's as well.
Ok well I am pushing it a little bit with the neighbors lights flickering but all else was absolutely true. :)

Resources