H.460.18 and NAT - voip

I'm going through the Whitepaper by RADVISION on NAT/Firewall traversal for H.323 endpoints.
It is suggested there to use ITU-T H.460.18,17 and 19.
460.17 is very clear way for NAT traversal, but I'm not so clear about the 460.18.
Both present a clear solution for Firewall, but how is 460.18 a solution for NAT traversal?
Regards,

H.460.18 works by opening pinholes when moving from one protocol/network connection to the next.
H.323 works in the following classic way to connect a call:
RAS is used over UDP to register to the gatekeeper
Q.931 is used over TCP (usually) to initiate a call
H.245 is used to negotiate media capabilities and open media channels
RTP/RTCP is used to send actual media
Now, to be able to open up Q.931 and H.245, you need the endpoint to be listening on a TCP address for incoming connections. If the endpoint is behind a NAT - that will be impossible to achieve.
So H.460.18 adds special messages to get these TCP connections from the inside out (=reverse).
On RAS, when a new TCP connection needs to be opened for Q.931, a RAS SCI (ServiceControlIndication) message will be sent to the endpoint so that the endpoint will open up the TCP connection for Q.931 instead of just waiting to get an incoming connection.
On Q.931, when a new H.245 connection needs to be opened, it is initiated today already on Q.931; but now it will always be done from the endpoint behind the NAT to a public address.
To sum it up:
H.460.17 uses a single connection outbound from the endpoint to the gatekeeper and then just tunnels everything on top of it.
H.460.18 just opens up a new pinhole from one protocol to the next by having the endpoint behind a NAT do the connecting instead of doing the listening.

The problem with H.460.17 is that virtually no H.323 equipment supports it.
H.460.18 works nicely, even across vendors. It lets the endpoint behind the firewall poke a whole and then uses that whole for both ways of communication. Its rather simple when you read though the standards document. But beware that it is patented by Tandberg, so you have to get a (free) license before you can implement it.
You can look at the GNU Gatekeeper to see the details how H.460.18 gets through the firewall.

Related

TCP hole punching in Node without a server

I'm trying to follow the code given here to implement NAT hole punching in Node.js. I'd like to know if the server is strictly necessary. Having read about hole punching, I am under the impression that the purpose of the server is to allow the clients to exchange some information (including but not limited to their addresses and ports they want to communicate on) so that they can proceed to talk directly. Assuming the clients already had each other's information (again, including but not limited to their addresses and ports), would the server still be necessary? If so why and if not, how could this be implemented?
For instance, say one were to build an application where client_A prints out all information that would have been transmitted to the server for user_A to read, who then sends this to user_B, who then submits this info to client_B (this could be done via email for example). Wouldn't this avoid the need for a server?
Here is another explanation of why I think it might be possible to remove the server in the middle:
In NAT hole punching (assuming I understand it correctly), the communications begin when client_A sends a message to the server. The message contains some information that the server then passes on to client_B when client_B contacts the server. After this point, client_A and client_B are able to communicate directly without the need for the server. I am under the impression that once a direct connection between client_A and client_B has been established, the server could go offline and the two clients would still be able to communicate directly with one another. If this is the case, then I would imagine that any information that is being used to maintain this connection (be that addresses, ports, or any other kind of info) could be exchanged through any other channel (eg: email, a handwritten letter, a voice call, etc) at the beginning of the protocol, and then the connection could be established without ever needing the server.
Regarding 'tricking' the router
As manishig pointed out to me in a comment (thanks), NAT hole punching also requires tricking the router. If I understand correctly (please correct me if not) the router is tricked by having the router store the info for directing incoming packets from the server to client_A, however, these packets are actually coming from client_B after the initial phase of the protocol. If this is a correct description of the problem, is there a way to trick the router that doesn't require using a server?
There are ways to communicate between two remote computers over the internet without an intermidiate server, but IMO it is not the preferred way.
Why an intermidiate server is needed?
If client_A and client_B are both in the same LAN (e.g your home/office network) you can make sure (configure on the clients side and/or the router) that they will have a static ip address over this LAN and they can just talk freely.
E.G: If client_A is listening on port 8080, client_B can create a connection to client_A_ip on port 8080
Over the internet any packet sent is passed through NAT usually at least twice. One time after going through your LAN (e.g your home/office router) and at least once over an ISP endpoint. Which means you have no controll over the public ip and port assigned to your packet.
Now not only that you don't have controll over your packet's assigned public ip and port, these are also not static. They won't change while you have an active TCP connection, but you don't have any other guarantee from your ISP regarding your assigned public ip and port.
The intermediate server`s purpose is to dynamically update each client with it's peer info and also keeping the tcp connection open, so that peer to peer comunication will be available.
Alternative solution to an intermidiate server (Not recommended)
If you want your clients to communicate without an intermidiate server you can buy a public static ip from your ISP (if they support it) and then there are ways you can make (with some config) that one of your clients have a public static ip and port that the other client can connect to.
But I wouldn't recommend it, since it requires some understanding in IT and security risks.
Also if both client's are portable and connect to different networks all the time it's not a valid solution

How to transfer of any type of data across two separate networks without violating cyber security using UDP

How we can share any type of data over the two separate networks without violating security mechanisms using UDP ?
There are a few things you'll have to remember:
Every network has its firewall, and it depends on the firewall rules, whether to allow your traffic into the network or not. First, ask your client or receiver to make changes in the firewall so that it accepts your IP address and also remember most of the systems have an edge firewall too.
Be clear with the type of connection i.e., p2p (or) server & client. It's better if it is a client & server type connection.
UDP by definition is NOT a connection-oriented protocol, so there is no state to keep track of as far as OSI layers 2-4 are concerned. All incoming UDP connections are treated as "new" or the same.
Also, see that none of the systems is under NAT connection, as the router will remember the IP and port of the device just for a while. And if there is any delay in response from client-side then the system under NAT will not know the IP or the port of the device, where it is supposed to send the traffic.

Is there a way to test if a computer's connection is firewalled?

I'm writing a piece of P2P software, which requires a direct connection to the Internet. It is decentralized, so there is no always-on server that it can contact with a request for the server to attempt to connect back to it in order to observe if the connection attempt arrives.
Is there a way to test the connection for firewall status?
I'm thinking in my dream land where wishes were horses, there would be some sort of 3rd-party, public, already existent servers to whom I could send some sort of simple command, and they would send a special ping back. Then I could simply listen to see if that arrives and know whether I'm behind a firewall.
Even if such a thing does not exist, are there any alternative routes available?
Nantucket - does your service listen on UDP or TCP?
For UDP - what you are sort of describing is something the STUN protocol was designed for. It matches your definition of "some sort of simple command, and they would send a special ping back"
STUN is a very "ping like" (UDP) protocol for a server to echo back to a client what IP and port it sees the client as. The client can then use the response from the server and compare the result with what it thinks its locally enumerated IP address is. If the server's response matches the locally enumerated IP address, the client host can self determinte that it is directly connected to the Internet. Otherwise, the client must assume it is behind a NAT - but for the majority of routers, you have just created a port mapping that can be used for other P2P connection scenarios.
Further, you can you use the RESPONSE-PORT attribute in the STUN binding request for the server to respond back to a different port. This will effectively allow you to detect if you are firewalled or not.
TCP - this gets a little tricky. STUN can partially be used to determine if you are behind a NAT. Or simply making an http request to whatismyip.com and parsing the result to see if there's a NAT. But it gets tricky, as there's no service on the internet that I know of that will test a TCP connection back to you.
With all the above in mind, the vast majority of broadband users are likely behind a NAT that also acts as a firewall. Either given by their ISP or their own wireless router device. And even if they are not, most operating systems have some sort of minimal firewall to block unsolicited traffic. So it's very limiting to have a P2P client out there than can only work on direct connections.
With that said, on Windows (and likely others), you can program your app's install package can register with the Windows firewall so your it is not blocked. But if you aren't targeting Windows, you may have to ask the user to manually fix his firewall software.
Oh shameless plug. You can use this open source STUN server and client library which supports all of the semantics described above. Follow up with me offline if you need access to a stun service.
You might find this article useful
http://msdn.microsoft.com/en-us/library/aa364726%28v=VS.85%29.aspx
I would start with each os and ask if firewall services are turned on. Secondly, I would attempt the socket connections and determine from the error codes if connections are being reset or timeout. I'm only familiar with winsock coding, so I can't really say much for Linux or mac os.

tcp_tw_reuse vs tcp_tw_recycle : Which to use (or both)?

I have a website and application which use a significant number of connections. It normally has about 3,000 connections statically open, and can receive anywhere from 5,000 to 50,000 connection attempts in a few seconds time frame.
I have had the problem of running out of local ports to open new connections due to TIME_WAIT status sockets. Even with tcp_fin_timeout set to a low value (1-5), this seemed to just be causing too much overhead/slowdown, and it would still occasionally be unable to open a new socket.
I've looked at tcp_tw_reuse and tcp_tw_recycle, but I am not sure which of these would be the preferred choice, or if using both of them is an option.
According to Linux documentation, you should use the TCP_TW_REUSE flag to allow reusing sockets in TIME_WAIT state for new connections.
It seems to be a good option when dealing with a web server that have to handle many short TCP connections left in a TIME_WAIT state.
As described here, The TCP_TW_RECYCLE could cause some problems when using load balancers...
EDIT (to add some warnings ;) ):
as mentionned in comment by #raittes, the "problems when using load balancers" is about public-facing servers. When recycle is enabled, the server can't distinguish new incoming connections from different clients behind the same NAT device.
NOTE: net.ipv4.tcp_tw_recycle has been removed from Linux in 4.12 (4396e46187ca tcp: remove tcp_tw_recycle).
SOURCE: https://vincent.bernat.im/en/blog/2014-tcp-time-wait-state-linux
pevik mentioned an interesting blog post going the extra mile in describing all available options at the time.
Modifying kernel options must be seen as a last-resort option, and shall generally be avoided unless you know what you are doing... if that were the case you would not be asking for help over here. Hence, I would advise against doing that.
The most suitable piece of advice I can provide is pointing out the part describing what a network connection is: quadruplets (client address, client port, server address, server port).
If you can make the available ports pool bigger, you will be able to accept more concurrent connections:
Client address & client ports you cannot multiply (out of your control)
Server ports: you can only change by tweaking a kernel parameter: less critical than changing TCP buckets or reuse, if you know how much ports you need to leave available for other processes on your system
Server addresses: adding addresses to your host and balancing traffic on them:
behind L4 systems already sized for your load or directly
resolving your domain name to multiple IP addresses (and hoping the load will be shared across addresses through DNS for instance)
According to the VMWare document, the main difference is TCP_TW_REUSE works only on outbound communications.
TCP_TW_REUSE uses server-side time-stamps to allow the server to use a time-wait socket port number for outbound communications once the time-stamp is larger than the last received packet. The use of these time-stamps allows duplicate packets or delayed packets from the old connection to be discarded safely.
TCP_TW_RECYCLE uses the same server-side time-stamps, however it affects both inbound and outbound connections. This is useful when the server is the first party to initiate connection closure. This allows a new client inbound connection from the source IP to the server. Due to this difference, it causes issues where client devices are behind NAT devices, as multiple devices attempting to contact the server may be unable to establish a connection until the Time-Wait state has aged out in its entirety.

NAT, P2P and Multiplayer

How can an application be designed such that two peers can communicate directly with each other (assuming both know each other's IPs), but without outgoing connections? That's, no ports will be opened. Bitorrent for example does it, but multiplayer games (as far as I know) require port forwarding.
I'm not sure what you mean by No Outgoing Connections, I'm going to assume like everyone else you meant no Incoming Connections (they are behind a NAT/FW/etc).
The most common one mentioned so far is UPNP, which in this context is a protocol that allows you as a computer to talk to the Gateway and say forward me this port because I want someone on the outside to be able to talk to me. UPNP is also designed for other things, but this is the common thing for home networking (Actually it's one of many definitions).
There are also more common and slightly more reliable ways if you don't own the network. The most common is called STUN but if I recall correctly there are a few variants. Basically you use a third party server that allows incoming connections to try and coordinate a communication channel. Basically, what you do is send a UDP packet to you're peer, which will open up you're NAT for a response, but gets dropped on you're peer's NAT (since no forwarding rule exists yet). Through the connection to the intermediary, they are then told to do the same, which now opens up their NAT, and matches the existing rule in you're NAT. Now the communications can proceed. Their is a variant of this which will allow a TCP/IP connection as well by sending SYN and SYN-ACK messages with some coordination.
The Wikipedia articles I've linked to has links to the relevant rfc's for these protocols on precisely how they work. Essentially it comes down to, there isn't an easy answer, as this is a very network centric problem.
You need a "meeting point" in the network somewhere: the participants "meet" at a "gateway" of some sort and the said "gateway function" takes care of the forwarding.
At least that's one way of doing it: I won't try to comment on the details of Bittorrent... I am sure you can google for links.
UPNP dealt with this mostly in the recent years, but the need to open ports is because the application has been coded to listen on a specific port for a response.
Ports beneath 1024 are called "registered" because they've been assigned a port number because a company paid for it. This doesn't mean you couldn't use port 53 for a webserver or SSH, just that most will assume when they see it that they are dealing with DNS. Ports above 1024 are unregistered, so there's no association - your web browser, be it Internet Explorer/Firefox/etc, is using an unregistered port to send the request to the StackOverflow webserver(s) on port 80. You can use:
netstat -a
..on windows hosts to see what network connections are currently established, including the port involved.
UPNP can be used to negotiate with the router to open and forward a port to your application. Even bit-torrent needs at least one of the peers to have an open port to enable p2p connections. There is no need for both peers to have an open port however, since they both communicate with the same server (tracker) that lets them negotiate and determine who has an open port.
An alternative is an echo-server / relay-server somewhere on the internet that both peers trust, and have that relay all the traffic.
The "problem" with this solution is that the echo-server needs to have lots of bandwidth to accomodate all connected peers since it relays all the traffic rather than establish p2p connections.
Check out EchoWare: http://www.echogent.com/tech.htm

Resources