Silverlight can only send a certain number of simultaneous WCF requests at a time. I am trying to serialize the requests that a particular section of my application is performing because I don't need them to run concurrently.
The problem is as follows (summary below):
"WCF proxies in Silverlight applications use the SynchronizationContext of the thread from which the web service call is initiated to schedule the invocation of the async event handler when the response is received. When the web service call is initiated from the UI thread of a Silverlight application, the async event handler code will also execute on the UI thread."
http://tomasz.janczuk.org/2009/08/improving-performance-of-concurrent-wcf.html
summary: basically, if you block the thread that is calling the async method, it will never get called.
I can't figure out the right model of threading this such which would give me what I want in a reasonable way.
My only other requirement is that I don't want the UI thread to block.
As far as I can see, what should work is if the UI thread has a worker thread which queues up the calls as Action delegates, then uses an AutoResetEvent to execute a task one at a time in yet another worker thread. There are two problems:
1) The thread that calls async can't block, because then async will never get called. In fact, if you put that thread into a wait loop, I've noticed it doesn't get called either
2) You need a way to signal from the completed method of the async call that it is done.
Sorry that was so long, thanks for reading. Any ideas?
I have used a class that i build on my own to execute load operations synchronous. With the class you can register multiple load operations of diffrent domaincontexts and then execute them one by one. You can provide an Action to the constructor of the class that gets called, when all operations are finished (successful or failed).
Here´s the code of the class. I think it´s not complete and you have to change it to match your expectations. Maybe it can help you in your situation.
public class DomainContextQueryLoader {
private List<LoadOperation> _failedOperations;
private Action<DomainContextQueryLoader> _completeAction;
private List<QueuedQuery> _pendingQueries = new List<QueuedQuery>();
public DomainContextQueryLoader(Action<DomainContextQueryLoader> completeAction) {
if (completeAction == null) {
throw new ArgumentNullException("completeAction", "completeAction is null.");
}
this._completeAction = completeAction;
}
/// <summary>
/// Expose the count of failed operations
/// </summary>
public int FailedOperationCount {
get {
if (_failedOperations == null) {
return 0;
}
return _failedOperations.Count;
}
}
/// <summary>
/// Expose an enumerator for all of the failed operations
/// </summary>
public IList<LoadOperation> FailedOperations {
get {
if (_failedOperations == null) {
_failedOperations = new List<LoadOperation>();
}
return _failedOperations;
}
}
public IEnumerable<QueuedQuery> QueuedQueries {
get {
return _pendingQueries;
}
}
public bool IsExecuting {
get;
private set;
}
public void EnqueueQuery<T>(DomainContext context, EntityQuery<T> query) where T : Entity {
if (IsExecuting) {
throw new InvalidOperationException("Query cannot be queued, cause execution of queries is in progress");
}
var loadBatch = new QueuedQuery() {
Callback = null,
Context = context,
Query = query,
LoadOption = LoadBehavior.KeepCurrent,
UserState = null
};
_pendingQueries.Add(loadBatch);
}
public void ExecuteQueries() {
if (IsExecuting) {
throw new InvalidOperationException("Executing of queries is in progress");
}
if (_pendingQueries.Count == 0) {
throw new InvalidOperationException("No queries are queued to execute");
}
IsExecuting = true;
var query = DequeueQuery();
ExecuteQuery(query);
}
private void ExecuteQuery(QueuedQuery query) {
System.Diagnostics.Debug.WriteLine("Load data {0}", query.Query.EntityType);
var loadOperation = query.Load();
loadOperation.Completed += new EventHandler(OnOperationCompleted);
}
private QueuedQuery DequeueQuery() {
var query = _pendingQueries[0];
_pendingQueries.RemoveAt(0);
return query;
}
private void OnOperationCompleted(object sender, EventArgs e) {
LoadOperation loadOperation = sender as LoadOperation;
loadOperation.Completed -= new EventHandler(OnOperationCompleted);
if (loadOperation.HasError) {
FailedOperations.Add(loadOperation);
}
if (_pendingQueries.Count > 0) {
var query = DequeueQuery();
ExecuteQuery(query);
}
else {
IsExecuting = false;
System.Diagnostics.Debug.WriteLine("All data loaded");
if (_completeAction != null) {
_completeAction(this);
_completeAction = null;
}
}
}
}
Update:
I´ve just noticed that you are not using WCF RIA Services, so maybe this class will not help your.
There are some options:
- You can take a look at the Agatha-rrsl either by inspecting the implementation of it or by just using it instead of pure wcf. The framework allows you to queue requests. You can read more here.
- Another option is to use the Reactive extension. There is a SO example here and more info here and here.
- You can try the Power Thread library from Jeffrey Richter. He describes it on his book CLR via C#. You can find the library here. This webcast gives you some info about it.
- You can always roll your own implementation. The yield statement is a good help here. Error handling makes it very difficult to get the solution right.
Related
I've seen so many questions similar to mine, but no answers that quite seem to apply to my situation.
My ASP.NET MVC app with EF 6 Code first and Unity has a web service that adds something to the database, then fires off another thread that adds more stuff to the database. The reason for using the other thread is to return the original request as quickly as possible. The context class is obtained using the Unity container RegisterType().
I've got lots of repository classes all using the same context, so to make sure they get the same instance I could use the PerRequestLifetimeManager in my Unity container, and that's fine for the http request threads but that the other threads can't use the context returned by the PerRequestLifetimeManager because this is only valid on the original http request thread.
So, I can use the PerThreadLifetimeManager. This is great because now the main request thread and the other thread it kicks off get the same instance of the context returned by Unity. The trouble is that so do other requests if they get given the same thread, so this is no good either.
So how can I configure things so that the request threads get their own PerRequest Lifetime Manager created context, and other threads get a different context?
The issue is made a little more difficult by the fact that the new thread calls other classes that need to use a context instance. However, these other classes can be used from the main request thread or the new thread, so grabbing a context instance when the thread is started and then passing it around will be tricky.
Thanks in advance
No takers then...
I'm going to have a go at answering my own question, but could do with some thoughts on my approach.
So I can't use the PerRequestLifetimeManager because worker threads can't use the context that this returns, but I can't use the PerThreadLifetimeManager because the context can last the lifetime of several HTTP requests. This class attempts to provide the best of both worlds.
/// <summary>
/// For the context class the PerRequestLifetimeManager is the most suitable lifetime manager,
/// but this doesn't work when a new worker thread is started as this needs to access the context.
/// The PerThreadLifetimeManager is no good either as the context can last for more than on request.
/// This class attempts to give the best of both worlds: per request lifetime management for HTTP requests
/// and thread storage for worker threads.
/// </summary>
public class PerRequestOrThreadLifetimeManager : PerRequestLifetimeManager, IDisposable
{
private const string threadDataSlotName = "PerRequestOrThreadLifetimeManager";
public override object GetValue()
{
if (System.Web.HttpContext.Current != null)
{
return base.GetValue();
}
else
{
return getManagedObject();
}
}
public override void RemoveValue()
{
throw new NotImplementedException();
}
public override void SetValue(object newValue)
{
if (System.Web.HttpContext.Current != null)
{
base.SetValue(newValue);
}
else
{
Thread.SetData(Thread.GetNamedDataSlot(threadDataSlotName), newValue);
}
}
private object getManagedObject()
{
return Thread.GetData(Thread.GetNamedDataSlot(threadDataSlotName));
}
public void Dispose()
{
try
{
IDisposable obj = getManagedObject() as IDisposable;
if (obj != null)
{
obj.Dispose();
obj = null;
}
}
catch { }
}
}
I have an MVC application in which I have a controller that receives data from the user and then uploads a file to Azure blob storage. The application is using Unity IoC to handle dependency injection.
During the workflow I have isolated the following code as demonstrating the problem
public class MvcController : Controller
{
private IDependencyResolver _dependencyResolver;
public MvcController() : this(DependencyResolver.Current)
{
}
public MvcController(IDependencyResolver dependencyResolver)
{
this._dependencyResolver = dependencyResolver;
}
public GetService<T>()
{
T resolved = _dependencyResolver.GetService<T>()
if (resolved == null)
throw new Exception(string.Format("Dependency resolver does not contain service of type {0}", typeof(T).Name));
return resolved;
}
}
public class MyController : MvcController
{
[NoAsyncTimeout]
public async Task<ActionResult> SaveFileAsync(/* A bunch of arguments */)
{
/* A bunch of code */
//This line gets a concrete instance from HttpContext.Current successfully...
IMyObject o = GetService<IMyObject>();
await SaveFileToAzure(/* A bunch of parameters */);
.
.
/* Sometime later */
Method2(/* A bunch of parameters */);
}
private Method2(/* A bunch of parameters */)
{
//This line fails because HttpContext.Current is null
IMyObject o = GetService<IMyObject>();
/* A bunch of other code */
}
private async Task SaveFileToAzure(/* A bunch of parameters */)
{
//Grab a blob container to store the file data...
CloudBlobContainer blobContainer = GetBlobContainer();
ICloudBlob blob = blobContainer.GetBlockBlobReference(somePath);
Stream dataStream = GetData();
System.Threading.CancellationToken cancelToken = GetCancellationToken();
//All calls to DependencyResolver.GetService<T>() after this line of code fail...
response = await blob.UploadStreamAsync(dataStream, cancelToken);
/* A bunch of other code */
}
}
Unity has a registration for my object:
container.RegisterType<IMyObject, MyObject>(new HttpLifetimeManager());
My lifetime manager is defined as follows:
public sealed class HttpRequestLifetimeManager : LifetimeManager
{
public Guid Key { get; private set; }
public HttpRequestLifetimeManager()
{
this.Key = Guid.NewGuid();
}
public override object GetValue()
{
return HttpContext.Current.Items[(object)this.Key];
}
public override void SetValue(object newValue)
{
HttpContext.Current.Items[(object)this.Key] = newValue;
}
public override void RemoveValue()
{
HttpContext.Current.Items.Remove((object)this.Key);
}
}
Nothing complicated.
Stepping into the HttpRequestLifetimeManager on the failing GetService() calls shows that after the UploadStreamAsync() call HttpContext.Current is null...
Has anyone else come across this problem? If so, is this a bug? Is this expected behaviour? Am I doing something out of the ordinary? What should I do to resolve it?
I can hack around it by storing a reference to HttpContext.Current prior to the offending call and restoring it after, but that doesn't seem like the right approach.
Any ideas?
To echo #Joachim - http context may not be available to your async thread. Compare the current thread id where you can see httpcontext is available, to the thread id where you can see that it isn't - i'm assuming you will see they are 2 different threads. If my assumption is correct this may be a sign that your main thread (the one with httpcontext) does not have a "synchronizationcontext". (you can see http://blogs.msdn.com/b/pfxteam/archive/2012/01/20/10259049.aspx for more details of how that works) If so, it may mean that the code immediately after your await statement is actually not running on the same thread as the code prior to the await statement! So from your perspective, one moment you have http context and the next you don't because execution has actually been switched to another thread! You should probably look at implementing / setting a synchronizationcontext on your main thread if that's the case and then control will be returned to your original thread with http context and that should fix your problem, or alternatively you could retrieve your object from http context on the original thread and find a way to pass it as a parameter to the async method/s so that they don't need to access http context to get their state.
I am creating a j2me application which is interacting with a database on a server. Therefore I launch a thread to connect to the server. I handle all my command actions in a separate class which implements CommandListener.
When I try to get the response the server returned I get an empty String. I have tried waiting for the thread that connects to the server to return but this makes the application unresponsive.
Below is the code I am using.
//my network worker class.
public class NetworkConnector implements Runnable {
//constructor
public NetworkConnector(String url){
//url =>server url to connect to.
Thread thread = new Thread(this);
thread.start();
}
private String serverReply="";
private String url="
//method to connect to the server and return the
//response from the server.
public String sendData(String serverUrl) {
//open streams to connect to the Server.
httpConn = (HttpConnection)
Connector.open(serverUrl,Connector.READ_WRITE, true);
httpConn.setRequestMethod(HttpConnection.GET);
inStream = httpConn.openInputStream();
int read;
while ((read = inStream.read()) != -1) {
sb.append((char) read);
}
return sb.toString();
}
public String getServerReply() {
//serverReply is a class variable.
return serverReply;
}
public void run(){
//call the send method that connects to the server.
serverResponse = sendData(Url);
}
} //end of connector class.
// this class is where all my Command Actions are
//implemented.
public class CommandActionController implements
CommandListener, DataReceiver {
public void commandAction(Command cmd, Displayable d) {
//networkMgr => is the worker class that makes
//connection to the server.
networkMgr = new NetworkConnector("http://localhost
/JsonPhp/login.php?uname=" + loginUserInfo.userName +
"&passwd=" + loginUserInfo.password);
//here am getting the response from the server.
String serverResponse = networkMgr.getServerReply();
//at this point the ServerReponse String is Empty =>
//yet the server is supposed to return some String.
System.out.println("xxxxxxxxxxxxxxxxxx
ServerResponse =" + serverResponse);
}
}//end of CommandListener class.
Your expectations about serverResponse value are wrong; it can be empty at the moment when you attempt to obtain it in commandAction with the code snippet in the question.
In order to get non-empty value, you need to redesign method NetworkConnector.getServerReply() to make it properly wait until thread finishes and server response is indeed obtained.
If you do that, however, you will also have to redesign CommandActionController to keep user interface responsive - your testing with "waiting for the thread that connects to the server" has shown just that.
Redesigned code should just launch the server connect thread and exit the commandAction as soon as possible (possibly changing to some "wait screen" to let user see what happens). Next screen update should be triggered only after server response is obtained.
Consider studying a tutorial specifically targeted on explaining how to properly design this kind applications - Networking, User Experience, and Threads:
This article explains how your MIDlet can make network connections without compromising your user interface. It includes six iterative examples that illustrate multithreaded networking and the use of a wait screen...
Here is how I'd do without java.util.concurrent:
Result handleRequest(){
final String url = // get url
Work work = new Work(url):
Thread t = new Thread(work);
t.start();
// do other stuff
if(t.isAlive()){
// still running
}
// this waits until the work is done
// and it will be safe to access work.result after
// this call has returned.
t.join();
return work.result;
}
and then
class Work implements Runnable{
final String url;
Result result;
public void run(){
this.result = // do your network stuff
}
}
You shouldn't start a thread in the constructor. Also, runnable are meant to be passed to threads. The easiest (and the "proper") way of doing this would be as follows:
Implement a Callable instead of a Runnable.
Use a ExecutorService instead of a Thread
Use Future object to do the processing asynchronously/be responsive to user
Here is a simple example.
class Stuff {
final ExecutorService exec =
Executors.newCachedExecutorService(// please see doc);
Result process(String url){
Future<Result> future = exec.submit(new Work(url));
// do some other stuff
if(future.isDone()){
// return result?
}
return future.get(); // this call will wait until result is available
}
}
and then
class Work implements Callable<Result> {
final String url;
Result call() throws Exception {
// do your network stuff here
return result;
}
}
See documentation of java.util.concurrent.ExecutorService.submit(), java.util.concurrent.Future and java.util.concurrent.Callable for details.
I have a class that I am applying multi-threading to. I would like to only allow 1 thread to 'startSpeaking()' at one time. Here is my attempt:
class VoiceEffect
{
SpeechSynthesizer reader = new SpeechSynthesizer();
static readonly object _locker = new object();
public void createVoiceThread(string str)
{
Thread voicethread = new Thread(() => startSpeaking(str)); // Lambda Process
voicethread.IsBackground = true;
voicethread.Start();
}
public void startSpeaking(string str)
{
lock (_locker)
{
reader.Rate = -2; // Voice effects.
reader.Volume = 100;
reader.Speak(str);
}
}
}
I am also calling createVoiceThread() method from another class. It is called by a similar convention in another class. E.g.
class Program
{
static void Main(string[] args)
{
VoiceEffect ve = new VoiceEffect();
string text = "Hello world, how are you today? I am super-duper!!";
for( int i=0 ; i < 10 ; i++ )
{
ve.createVoiceThread(text);
ve.startSpeaking(text);
Thread.Sleep(1000);
}
}
}
My question is how can I modify this program so that when startSpeaking() is called by any thread, that it only plays a single speech pattern at a time.
I know this question's old as hell, but if I'm understanding your question correctly (that you want all the speech done sequentially, as if it were done on a single thread) you can do something like this:
static class VoiceEffect
{
SpeechSynthesizer reader = new SpeechSynthesizer();
private volatile bool _isCurrentlySpeaking = false;
/// <summary>Event handler. Fired when the SpeechSynthesizer object starts speaking asynchronously.</summary>
private void StartedSpeaking(object sender, SpeakStartedEventArgs e)
{ _isCurrentlySpeaking = true; }
/// <summary>Event handler. Fired when the SpeechSynthesizer object finishes speaking asynchronously.</summary>
private void FinishedSpeaking(object sender, SpeakCompletedEventArgs e)
{ _isCurrentlySpeaking = false; }
private VoiceEffect _instance;
/// <summary>Gets the singleton instance of the VoiceEffect class.</summary>
/// <returns>A unique shared instance of the VoiceEffect class.</returns>
public VoiceEffect GetInstance()
{
if(_instance == null)
{ _instance = new VoiceEffect(); }
return _instance;
}
/// <summary>
/// Constructor. Initializes the class assigning event handlers for the
/// SpeechSynthesizer object.
/// </summary>
private VoiceEffect()
{
reader.SpeakStarted += new EventHandler<SpeakStartedEventArgs>(StartedSpeaking);
reader.SpeakCompleted += new EventHandler<SpeakCompletedEventArgs>(FinishedSpeaking);
}
/// <summary>Speaks stuff.</summary>
/// <param name="str">The stuff to speak.</param>
public void startSpeaking(string str)
{
reader.Rate = -2; // Voice effects.
reader.Volume = 100;
// if the reader's currently speaking anything,
// don't let any incoming prompts overlap
while(_isCurrentlySpeaking)
{ continue; }
reader.SpeakAsync(str);
}
/// <summary>Creates a new thread to speak stuff into.</summary>
/// <param name="str">The stuff to read.</param>
public void createVoiceThread(string str)
{
Thread voicethread = new Thread(() => startSpeaking(str)); // Lambda Process
voicethread.IsBackground = true;
voicethread.Start();
}
}
This gives you a singleton class that will manage all threads, and all threads will share the _isCurrentlySpeaking variable, which will mean that no speech prompts will ever overlap each other since they'll all have to wait until the variable is cleared before speaking. What I cannot guarantee is the order the prompts will be read (i.e., take control of the message-processing queue), if you submit multiple prompts to the queue while there's a prompt being spoken aloud already. Either way, this should pretty much work.
Your question isn't clear, but you have a single lock variable (_locker) which is static - that means only one thread can ever be executing startSpeaking at a time. It's not clear whether you're trying to make threads wait for each other, or whether your question is because you don't want them to wait for each other.
Either way, having a single static lock used like this is distinctly dubious, IMO. If you can really only effectively have one useful instance of this class, consider making it a singleton. (Generally not nice in terms of design.) If it's fine to have multiple independent instances, then make them independent by making the _locker variable an instance variable.
(I'd also strongly advise you to start following .NET naming conventions.)
I am using threads in blackberry to perform web service calls. I want to get notified as soon as the call gets a response back. I was using
Handlers
in android. I didnt find anything similar in blackberry.
Here is the code I am using to run the thread
class PrimeRun implements Runnable {
long minPrime;
PrimeRun(long minPrime) {
this.minPrime = minPrime;
}
public void run() {
// compute primes larger than minPrime
. . .
}
}
How can I get a notification after the thread finished running?
How can I do this in blackberry?
Thanks
Added more Information : Thanks for your reply. Its really
informative. Let me explain a bit more on my issue. I have a
webservice call which is running on a thread. As soon as I get the
reply back from server I want to execute the next function(next call
to server) which is based on the response from the previous call.So I need to wait until I get a response back. Also
at them same time I need to show a activity indicator on screen. I was
using handler for this in android. I am looking for something similar
on blackberry.
So your question essentially is this
One thread does the job while the other thread waits for completion
The first thread completes the job and "notifies" the second thread.
This is a simple producer consumer problem. Here is the code how you can solve this.
class JobResult
{
boolean done = false;
}
JobResult result = new JobResult();
class Worker extends Thread
{
JobResult _result;
public Worker( JobResult result )
{
_result = result
}
public void run()
{
// Do some very long job
synchronized( _result )
{
// modify result
_result.done = true;
_result.notify();
}
}
}
public class Waiter extends Thread
{
JobResult _result;
public Waiter( JobResult result )
{
_result = result;
}
public void run()
{
synchroinzed( _result ){
while(! _result.done)
{
this.wait();
}
}
// Wait is over. You can do something now.
}
}
As I got the Zach's question - he asks how to execute some code that involves UI changes (something like showing an info popup or closing the progress popup) upon a background thread completion. On Android a Handler created on the UI thread is often used for that purpose.
In BB you can use another way which is similar to Swing on desktop Java. When you need some code to be executed on the UI thread you wrap it in a Runnable and pass to one of the following methods:
// Puts runnable object into this application's event queue,
// and waits until it is processed.
Application.invokeAndWait(Runnable runnable)
// Puts runnable object into this application's event queue.
Application.invokeLater(Runnable runnable)
// Puts runnable object into this application's event queue
// for repeated execution.
Application.invokeLater(Runnable runnable, long time, boolean repeat)
So the behaviour of the above calls is similar to what Handler.post(Runnable r) (and the like) does.
Note, you can always get a handle to your Application instance by a static call Application.getApplication().
So in the end of a background thread it is safe to do something like this:
Application.getApplication().invokeLater(new Runnable() {
public void run() {
progressScreen.close();
Dialog.alert("I am finished!");
}
});
It is similar to Android's:
handler.post(new Runnable() {
public void run() {
progressScreen.dismiss();
showDialog(DIALOG_TASK_FINISHED_ID);
}
});
Android has a much rich multi threading primitives. But you can achieve the same even in Blackberry with equal elegance. The solution I provide below is essentially the same as previous, but with a minor change. Waiter thread can be replaced with built-in utility to perform painting on UI thread using UiApplicaiton's invokeLater method. You don't actually need to "notify" anyone but just update the UI once a particular task is completed. Check the docs for more info.
Anyway, you can model your code along the lines:
class ProgressScreen extends FullScreen
{
LabelField _label;
public void start()
{
}
public void setMessage( final String message )
{
UiApplication.getApplication(
UiApplication.invokeLater(
new Runnable() {
_label.setText( message );
}
)
);
}
public void dismiss()
{
this.close();
}
}
interface WebserviceTask
{
int STATUS_CONDITIONS_NOT_SATISFIED = -3;
int STATUS_NET_ERR = -2;
int STATUS_FAILURE = -1;
int STATUS_SUCCESS = 0;
public int invoke();
}
public class Updater extends Thread
{
final int NUM_TASKS = 10;
WebServiceTask tasks[] = new WebServiceTask[ NUM_TASKS ];
WebServiceTask tasks[0] = new WebServiceTask(){
public int invoke()
{
int retCode = 0;
// invoke a particular web service
return STATUS_SUCCESS;
}
}
public void run()
{
ProgressScreen progress = new ProgressScreen();
progress.start();
for( int i=0; i < NUM_TASKS; i++ )
{
int retcode;
WebServiceTask t = tasks[i];
retcode = t.invoke();
String mesg;
switch( retcode )
{
case STATUS_SUCCESS: { mesg ="Task successfully completed!";} break;
case STATUS_NET_ERR: { mesg ="Could not connect to network";} break;
}
progress.setMessage(message);
}
progress.dismiss();
}
}
Note that I have provided only the stubs to give you an idea how you may accomplish. Let us know how it goes.