Strange data access time in Azure Table Storage while using .Take() - azure

this is our situation:
We store user messages in table Storage. The Partition key is the UserId and the RowKey is used as a message id.
When a users opens his message panel we want to just .Take(x) number of messages, we don't care about the sortOrder. But what we have noticed is that the time it takes to get the messages varies very much by the number of messages we take.
We did some small tests:
We did 50 * .Take(X) and compared the differences:
So we did .Take(1) 50 times and .Take(100) 50 times etc.
To make an extra check we did the same test 5 times.
Here are the results:
As you can see there are some HUGE differences. The difference between 1 and 2 is very strange. The same for 199-200.
Does anybody have any clue how this is happening? The Table Storage is on a live server btw, not development storage.
Many thanks.
X: # Takes
Y: Test Number
Update
The problem only seems to come when I'm using a wireless network. But I'm using the cable the times are normal.

Possibly the data is collected in batches of a certain number x. When you request x+1 rows, it would have to take two batches and then drop a certain number.
Try running your test with increments of 1 as the Take() parameter, to confirm or dismiss this assumption.

Related

Event Processing (17 Million Events/day) using Azure Stream Analytics HoppingWindow Function - 24H Window, 1 Minute Hops

We have a business problem that needs solving and would like some guidance from the community on the combination of products in Azure we could use to solve it.
The Problem:
I work for a business that produces online games. We would like to display the number of users playing a specific game in a 24 Hour Window, but we want the value to update every minute. Essentially the output that HoppingWindow(Duration(hour, 24), Hop(minute, 1)) function in Azure Stream Analytics will provide.
Currently, the amount of events are around 17 Million a day and the Stream Analytics Job seems to be struggling with the load. We tried the following so far;
Tests Done:
17 Million Events -> Event Hub (32 Partitions) -> ASA (42 Streaming Units) -> Table Storage
Failed: Stream Analytics Job never outputs on large timeframes (Stopped test at 8 Hours)
17 Million Events -> Event Hub (32 Partitions) -> FUNC -> Table Storage (With Proper Partition/Row Key)
Failed: Table storage does not support distinct count
17 Million Events -> Event Hub -> FUNC -> Cosmos DB
Tentative: Cosmos DB doesn't support distinct count, not natively anyways. Seems to be some hacks going around, but not sure that's the way to go.
Is there any known designs geared for processing 17 Million events a minute, every minute?
Edit: As per the comments, the code.
SELECT
GameId,
COUNT(DISTINCT UserId) AS ActiveCount,
DateAdd(hour, -24, System.TimeStamp()) AS StartWindowUtc,
System.TimeStamp() AS EndWindowUtc INTO [out]
FROM
[in] TIMESTAMP BY EventEnqueuedUtcTime
GROUP BY
HoppingWindow(Duration(hour, 24), Hop(minute, 1)),
GameId,
UserId
The expected output, note that in reality there will be 1440 records per GameId. One for each minute
To be clear, the problem is that generating the expected output on the larger timeframes, ie 24 Hours doesn't output or at the very least takes 8+ Hours to output. The smaller window sizes work, for example changing the above code to use HoppingWindow(Duration(minute, 10), Hop(minute, 5)).
The tests that followed assumed that ASA is not the answer to the problem and we tried different approaches. Which seemed to have caused a bit of confusion, sorry about that
The way ASA scales up at the moment is with 1 node vertically from 1 to 6SU, then horizontally with multiple nodes of 6SU above that threshold.
Obviously, to be able to scale horizontally a job needs to be parallelizable, which means the stream will be distributed across nodes according to the partition scheme.
Now if the input stream, the query and the output destination are aligned in partitions, then the job is called embarrassingly parallel and that's where you'll be able to reach maximum scale. Each pipeline, from entry to output, will be independent, and each node will only have to maintain in memory the data pertaining to its own state (those 24h of data). That's what we're looking for here: minimizing the local data store at each node.
With EH supporting 32 partitions on most SKUs, the maximum scale publicly available on ASA is 192SU (6*32). If partitions are balanced, that's means that each node will have the least amount of data to maintain in its own state store.
Then we need to minimize the payload itself (the size of an individual message), but from the look of the query that's already the case.
Could you try scaling up to 192SU and see what happens?
We are also working on multiple other features that could help on that scenario. Let me know if that could be of interest to you.

Tracking a counter value in application insights

I'm trying to use application insights to keep track of a counter of number of active streams in my application. I have 2 goals to achieve:
Show the current (or at least recent) number of active streams in a dashboard
Activate a kind of warning if the number exceeds a certain limit.
These streams can be quite long lived, and sometimes brief. So the number can sometimes change say 100 times a second, and sometimes remain unchanged for many hours.
I have been trying to track this active streams count as an application insights metric.
I'm incrementing a counter in my application when a new stream opens, and decrementing when one closes. On each change I use the telemetry client something like this
var myMetric = myTelemetryClient.GetMetric("Metricname");
myMetric.TrackValue(myCount);
When I query my metric values with Kusto, I see that because of these clusters of activity within a 10 sec period, my metric values get aggregated. For the purposes of my alarm, I can live with that, as I can look at the max value of the aggregate. But I can't present a dashboard of the number of active streams, as I have no way of knowing the number of active streams between my measurement points. I know the min value, max and average, but I don't know the last value of the aggregate period, and since it can be somewhere between 0 and 1000, its no help.
So the solution I have doesn't serve my needs, I thought of a couple of changes:
Adding a scheduled pump to my counter component, which will send the current counter value, once every say 5 minutes. But I don't like that I then have to add a thread for each of these counters.
Adding a timer to send the current value once, 5 minutes after the last change. Countdown gets reset each time the counter changes. This has the same problem as above, and does an excessive amount of work to reset the counter when it could be changing thousands of times a second.
In the end, I don't think my needs are all that exotic, so I wonder if I'm using app insights incorrectly.
Is there some way I can change the metric's behavior to suit my purposes? I appreciate that it's pre-aggregating before sending data in order to reduce ingest costs, but it's preventing me from solving a simple problem.
Is a metric even the right way to do this? Are there alternative approaches within app insights?
You can use TrackMetric instead of the GetMetric ceremony to track individual values withouth aggregation. From the docs:
Microsoft.ApplicationInsights.TelemetryClient.TrackMetric is not the preferred method for sending metrics. Metrics should always be pre-aggregated across a time period before being sent. Use one of the GetMetric(..) overloads to get a metric object for accessing SDK pre-aggregation capabilities. If you are implementing your own pre-aggregation logic, you can use the TrackMetric() method to send the resulting aggregates.
But you can also use events as described next:
If your application requires sending a separate telemetry item at every occasion without aggregation across time, you likely have a use case for event telemetry; see TelemetryClient.TrackEvent (Microsoft.ApplicationInsights.DataContracts.EventTelemetry).

Getting Multiple Last Price Quotes from Interactive Brokers's API

I have a question regarding the Python API of Interactive Brokers.
Can multiple asset and stock contracts be passed into reqMktData() function and obtain the last prices? (I can set the snapshots = TRUE in reqMktData to get the last price. You can assume that I have subscribed to the appropriate data services.)
To put things in perspective, this is what I am trying to do:
1) Call reqMktData, get last prices for multiple assets.
2) Feed the data into my prediction engine, and do something
3) Go to step 1.
When I contacted Interactive Brokers, they said:
"Only one contract can be passed to reqMktData() at one time, so there is no bulk request feature in requesting real time data."
Obviously one way to get around this is to do a loop but this is too slow. Another way to do this is through multithreading but this is a lot of work plus I can't afford the extra expense of a new computer. I am not interested in either one.
Any suggestions?
You can only specify 1 contract in each reqMktData call. There is no choice but to use a loop of some type. The speed shouldn't be an issue as you can make up to 50 requests per second, maybe even more for snapshots.
The speed issue could be that you want too much data (> 50/s) or you're using an old version of the IB python api, check in connection.py for lock.acquire, I've deleted all of them. Also, if there has been no trade for >10 seconds, IB will wait for a trade before sending a snapshot. Test with active symbols.
However, what you should do is request live streaming data by setting snapshot to false and just keep track of the last price in the stream. You can stream up to 100 tickers with the default minimums. You keep them separate by using unique ticker ids.

Maximum number of activewidth object allowed

My program runs fine with limited data but when I put in all four databases activewidth won't work.
Database 1 has 29990 entries.
Database 2 has around 27000 entries.
Database 3 has roughly 17000 entries.
Database 4 has 430 entries.
Each database, grouped by its kind and includes business type, name, address, city, state, phone number, longitude, latitude, sales tax info, and daily hours of operation.
In total 12.1Mb of data.
With database 1 only in the program it works fine and I can scroll over a point on the map and activewidth will increase the size of the dot and the program will bring up the underlying data on the left hand side of the screen just like it is suppose to do.
Now that I have added in all four maps and can click them on and off separately, with only #1 turned on activewidth won't work and the underlying data won't show on the left. The points on the map are there and I can click through all four checkbuttons and turn on and off the points. I currently don't have the code in yet for the underlying data on database 2-4, just the ability to turn them on and off. Only activewidth isn't working now that I've got it so I can view the points for all 4 databases.
I decided to try commenting out all code for databases 2-4 and see what would happen and it went back to working fine again. Then I went and added in database 2 back into the mix and it went back to not working again. Then I tried database 2 only and it was activewidthing fine as long as database 1 was commented out. With database 1 active the activewidth was very slow to work/not working at all.
Is there a feasible maximum number of entries I can use. Hopefully not because I still have several more databases to get finished off and added into the program that will take the total number of entries up over 100K before all is said and done.
Nothing else makes sense since I'm just changing self.alocation to self.blocation, when I go to add in database 2-4. I'm just changing the identifier to show which database is being worked with and copying the rest of the code over between routines since everything is the same...just different business separated into appropriately grouped databases. It seems it's in the amount of data that is being used and not in the anything doing with the way the program is written.
I figured by splitting up the files, not only for my benefit but also to make the files smaller it would help alleviate the problem but so far it hasn't. Is there any other way to work around data overload?
self.alocation = []
for x in range(0, len(self.atype)):
pix1x = round((float(self.along[x])+(-self.longitudecenter+(self.p/2)))/(self.p/714),0)
pix1y = round((((self.p/2) + self.latitudecenter-(float(self.alat[x])))/(self.p/714)),0)
z = self.canvas.create_line(pix1x, pix1y, pix1x+4, pix1y+4, activewidth="10.0", fill = '', width = 5)
self.alocation.append((z,x))

Spark streaming - waiting for data for window aggregations?

I have data in the format { host | metric | value | time-stamp }. We have hosts all around the world reporting metrics.
I'm a little confused about using window operations (say, 1 hour) to process data like this.
Can I tell my window when to start, or does it just start when the application starts? I want to ensure I'm aggregating all data from hour 11 of the day, for example. If my window starts at 10:50, I'll just get 10:50-11:50 and miss 10 minutes.
Even if the window is perfect, data may arrive late.
How do people handle this kind of issue? Do they make windows far bigger than needed and just grab the data they care about on every batch cycle (kind of sliding)?
In the past, I worked on a large-scale IoT platform and solved that problem by considering that the windows were only partial calculations. I modeled the backend (Cassandra) to receive more than 1 record for each window. The actual value of any given window would be the addition of all -potentially partial- records found for that window.
So, a perfect window would be 1 record, a split window would be 2 records, late-arrivals are naturally supported but only accepted up to a certain 'age' threshold. Reconciliation was done at read time. As this platform was orders of magnitude heavier in terms of writes vs reads, it made for a good compromise.
After speaking with people in depth on MapR forums, the consensus seems to be that hourly and daily aggregations should not be done in a stream, but rather in a separate batch job once the data is ready.
When doing streaming you should stick to small batches with windows that are relatively small multiples of the streaming interval. Sliding windows can be useful for, say, trends over the last 50 batches. Using them for tasks as large as an hour or a day doesn't seem sensible though.
Also, I don't believe you can tell your batches when to start/stop, etc.

Resources