Haskell Constraint is no smaller than the instance head - haskell

Some rings can be equipped with a norm function:
class (Ring.C a) => EuclideanDomain a where
norm :: a -> Integer
With this function, the ring can be ordered in the obvious way:
compare x y = compare (norm x) (norm y)
But I'm not sure how to indicate this. I tried to do
instance (EuclideanDomain a, Eq a) => Ord a where
but this gives me some warnings, and when I enable the relevant compiler flags it tells me "Constraint is no smaller than the instance head" - if I enable UndecidableInstances everything goes to hell.
Is there a way to do what I want?

hammar's already provided a solution; I'd like to point out another problem with this example. What you want to express is "Whenever a type is an instance of Eq and EuclideanDomain, use this rule to make an instance for Ord." But this is inexpressible in Haskell. The line
instance (EuclideanDomain a, Eq a) => Ord a where
actually means, "Use this rule to make an Ord instance for any type. It's an error if instances of EuclideanDomain and Eq aren't in scope". That's not good, because this rule will overlap with every other Ord instance.
Basically any time you want to write an instance Class typevar, you're going to need a newtype.

In order to avoid infinite loops, the compiler normally requires that the constraints of an instance are "smaller" than the instance itself, so that the algorithm will terminate. Your instance does not make a any smaller in the constraints, so that's what the compiler is complaining about.
The UndecidableInstances extension lifts this restriction, leaving it up to you to prove that it will terminate. It's thus possible to send the compiler into an infinite loop when using this extension.
The common solution to this is to add a newtype:
newtype ByNorm a = ByNorm a
instance (EuclideanDomain a, Eq a) => Ord (ByNorm a) where
compare (ByNorm x) (ByNorm y) = compare (norm x) (norm y)
Now the constraints are smaller than the instance head, as they strip off the newtype. No extension required.

Related

Why is context reduction necessary?

I've just read this paper ("Type classes: an exploration of the design space" by Peyton Jones & Jones), which explains some challenges with the early typeclass system of Haskell, and how to improve it.
Many of the issues that they raise are related to context reduction which is a way to reduce the set of constraints over instance and function declarations by following the "reverse entailment" relationship.
e.g. if you have somewhere instance (Ord a, Ord b) => Ord (a, b) ... then within contexts, Ord (a, b) gets reduced to {Ord a, Ord b} (reduction does not always shrink the number of constrains).
I did not understand from the paper why this reduction was necessary.
Well, I gathered it was used to perform some form of type checking. When you have your reduced set of constraint, you can check that there exist some instance that can satisfy them, otherwise it's an error. I'm not too sure what the added value of that is, since you would notice the problem at the use site, but okay.
But even if you have to do that check, why use the result of reduction inside inferred types? The paper points out it leads to unintuitive inferred types.
The paper is quite ancient (1997) but as far as I can tell, context reduction is still an ongoing concern. The Haskell 2010 spec does mention the inference behaviour I explain above (link).
So, why do it this way?
I don't know if this is The Reason, necessarily, but it might be considered A Reason: in early Haskell, type signatures were only permitted to have "simple" constraints, namely, a type class name applied to a type variable. Thus, for example, all of these were okay:
Ord a => a -> a -> Bool
Eq a => a -> a -> Bool
Graph gr => gr n e -> [n]
But none of these:
Ord (Tree a) => Tree a -> Tree a -> Bool
Eq (a -> b) => (a -> b) -> (a -> b) -> Bool
Graph Gr => Gr n e -> [n]
I think there was a feeling then -- and still today, as well -- that allowing the compiler to infer a type which one couldn't write manually would be a bit unfortunate. Context reduction was a way of turning the above signatures either into ones that could be written by hand as well or an informative error. For example, since one might reasonably have
instance Ord a => Ord (Tree a)
in scope, we could turn the illegal signature Ord (Tree a) => ... into the legal signature Ord a => .... On the other hand, if we don't have any instance of Eq for functions in scope, one would report an error about the type which was inferred to require Eq (a -> b) in its context.
This has a couple of other benefits:
Intuitively pleasing. Many of the context reduction rules do not change whether the type is legal, but do reflect things humans would do when writing the type. I'm thinking here of the de-duplication and subsumption rules that let you turn, e.g. (Eq a, Eq a, Ord a) into just Ord a -- a transformation one definitely would want to do for readability.
This can frequently catch stupid errors; rather than inferring a type like Eq (Integer -> Integer) => Bool which can't be satisfied in a law-abiding way, one can report an error like Perhaps you did not apply a function to enough arguments?. Much friendlier!
It becomes the compiler's job to pinpoint what went wrong. Instead of inferring a complicated context like Eq (Tree (Grizwump a, [Flagle (Gr n e) (Gr n' e') c])) and complaining that the context is not satisfiable, it instead is forced to reduce this to the constituent constraints; it will instead complain that we couldn't determine Eq (Grizwump a) from the existing context -- a much more precise and actionable error.
I think this is indeed desirable in a dictionary passing implementation. In such an implementation, a "dictionary", that is, a tuple or record of functions is passed as implicit argument for every type class constraint in the type of the applied function.
Now, the question is simply when and how those dictionaries are created. Observe that for simple types like Int by necessity all dictionaries for whatever type class Int is an instance of will be a constant.
Not so in the case of parameterized types like lists, Maybe or tuples. It is clear that to show a tuple, for instance, the Show instances of the actual tuple elements need to be known. Hence such a polymorphic dictionary cannot be a constant.
It appears that the principle guiding the dictionary passing is such that only dictionaries for types that appear as type variables in the type of the applied function are passed. Or, to put it differently: no redundant information is replicated.
Consider this function:
f :: (Show a, Show b) => (a,b) -> Int
f ab = length (show ab)
The information that a tuple of show-able components is also showable, thus a constraint like Show (a,b) needs not to appear when we already know (Show a, Show b).
An alternative implementation would be possible, though, where the caller .would be responsible to create and pass dictionaries. This could work without context reduction, such that the type of f would look like:
f :: Show (a,b) => (a,b) -> Int
But this would mean that the code to create the tuple dictionary would have to be repeated on every call site. And it is easy to come up with examples where the number of necessary constraints actually increases, like in:
g :: (Show (a,a), Show(b,b), Show (a,b), Show (b, a)) => a -> b -> Int
g a b = maximum (map length [show (a,a), show (a,b), show (b,a), show(b,b)])
It is instructive to implement a type class/instance system with actual records that are explicitly passed. For example:
data Show' a = Show' { show' :: a -> String }
showInt :: Show' Int
showInt = Show' { show' = intshow } where
intshow :: Int -> String
intshow = show
Once you do this you will probably easily recognize the need for "context reduction".

Can I tell GHC to arbitrarily select which instance to use, because I don't care?

I have some code like this:
{-# OPTIONS_GHC -Wall #-}
{-# LANUAGE VariousLanguageExtensionsNoneOfWhichWorked #-}
import Control.Applicative
import Data.Either
import Data.Void
class Constructive a where
lem :: Either (a -> Void) a
instance Constructive Void where
lem = Left id
instance Num a => Constructive a where
lem = Right 0
instance Enum a => Constructive a where
lem = Right $ toEnum 0
instance Bounded a => Constructive a where
lem = Right minBound
instance Monoid a => Constructive a where
lem = Right mempty
instance Alternative f => Constructive (f a) where
lem = Right empty
The problem is, GHC complains with
pad.hs:49:10:
Duplicate instance declarations:
instance [overlap ok] Bounded a => Constructive a
-- Defined at pad.hs:49:10
instance [overlap ok] Monoid a => Constructive a
-- Defined at pad.hs:52:10
Along with a bunch of similar errors.
Is there a way to tell GHC to pick one at random, since I don't care which it uses? (I don't even care if it picks a different one each time I use lem, since it does not matter.)
This is not really an answer to your question, more like an extended comment suggesting another route how to tackle the problem.
In Haskell the canonical solution would be to create a newtype for each of your instances, which is probably not what you want. However, I'd like to suggest you an alternative approach.
In Haskell we basically have 3 possibilities how to construct a data type:
Algebraic data types using products and coproducts (disjoint unions).
Function types.
Primitive types.
For the first part, we could use SYB or GHC Generics. If a product is empty, or has an empty factor, it maps to a -> Void. And a coproduct maps to a -> Void iff all its summands do.
A function type a -> b is constructive if both a and b are:
instance (Constructive a, Constructive b) => Constructive (a -> b) where
...
If x :: b is nonempty, a -> b is inhabited by const x. If a is empty then a -> b is inhabited by absurd. And if a is non-empty and b is empty, a -> b maps to Void.
All Haskell primitive types are non-empty, so they're trivially constructive.
Unfortunately it seems there is no way to tell GHC that all data types are one of these three. My suggestion would be to implement the instance for -> and then either
Try to use SYB to implement an instance for everything that implements Data. There would still be the problem how to deal with overlapping instances. Or:
Try to use GHC Generics to provide default instances for ADTs and implement instances manually for primitive types. This would mean that for every data type you'd have to still provide an empty instance implementation, with the default provided by Generics.
After writing this, I discovered AdvancedOverlap. Perhaps combining it with one of the previous approaches could lead to a nice solution.

Use of 'unsafeCoerce'

In Haskell, there is a function called unsafeCoerce, that turns anything into any other type of thing. What exactly is this used for? Like, why we would you want to transform things into each other in such an "unsafe" way?
Provide an example of a way that unsafeCoerce is actually used. A link to Hackage would help. Example code in someones question would not.
unsafeCoerce lets you convince the type system of whatever property you like. It's thus only "safe" exactly when you can be completely certain that the property you're declaring is true. So, for instance:
unsafeCoerce True :: Int
is a violation and can lead to wonky, bad runtime behavior.
unsafeCoerce (3 :: Int) :: Int
is (obviously) fine and will not lead to runtime misbehavior.
So what's a non-trivial use of unsafeCoerce? Let's say we've got an typeclass-bound existential type
module MyClass ( SomethingMyClass (..), intSomething ) where
class MyClass x where {}
instance MyClass Int where {}
data SomethingMyClass = forall a. MyClass a => SomethingMyClass a
Let's also say, as noted here, that the typeclass MyClass is not exported and thus nobody else can ever create instances of it. Indeed, Int is the only thing that instantiates it and the only thing that ever will.
Now when we pattern match to destruct a value of SomethingMyClass we'll be able to pull a "something" out from inside
foo :: SomethingMyClass -> ...
foo (SomethingMyClass a) =
-- here we have a value `a` with type `exists a . MyClass a => a`
--
-- this is totally useless since `MyClass` doesn't even have any
-- methods for us to use!
...
Now, at this point, as the comment suggests, the value we've pulled out has no type information—it's been "forgotten" by the existential context. It could be absolutely anything which instantiates MyClass.
Of course, in this very particular situation we know that the only thing implementing MyClass is Int. So our value a must actually have type Int. We could never convince the typechecker that this is true, but due to an outside proof we know that it is.
Therefore, we can (very carefully)
intSomething :: SomethingMyClass -> Int
intSomething (SomethingMyClass a) = unsafeCoerce a -- shudder!
Now, hopefully I've suggested that this is a terrible, dangerous idea, but it also may give a taste of what kind of information we can take advantage of in order to know things that the typechecker cannot.
In non-pathological situations, this is rare. Even rarer is a situation where using something we know and the typechecker doesn't isn't itself pathological. In the above example, we must be completely certain that nobody ever extends our MyClass module to instantiate more types to MyClass otherwise our use of unsafeCoerce becomes instantly unsafe.
> instance MyClass Bool where {}
> intSomething (SomethingMyClass True)
6917529027658597398
Looks like our compiler internals are leaking!
A more common example where this sort of behavior might be valuable is when using newtype wrappers. It's a fairly common idea that we might wrap a type in a newtype wrapper in order to specialize its instance definitions.
For example, Int does not have a Monoid definition because there are two natural monoids over Ints: sums and products. Instead, we use newtype wrappers to be more explicit.
newtype Sum a = Sum { getSum :: a }
instance Num a => Monoid (Sum a) where
mempty = Sum 0
mappend (Sum a) (Sum b) = Sum (a+b)
Now, normally the compiler is pretty smart and recognizes that it can eliminate all of those Sum constructors in order to produce more efficient code. Sadly, there are times when it cannot, especially in highly polymorphic situations.
If you (a) know that some type a is actually just a newtype-wrapped b and (b) know that the compiler is incapable of deducing this itself, then you might want to do
unsafeCoerce (x :: a) :: b
for a slight efficiency gain. This, for instance, occurs frequently in lens and is expressed in the Data.Profunctor.Unsafe module of profunctors, a dependency of lens.
But let me again suggest that you really need to know what's going on before using unsafeCoerce like this is anything but highly unsafe.
One final thing to compare is the "typesafe cast" available in Data.Typeable. This function looks a bit like unsafeCoerce, but with much more ceremony.
unsafeCoerce :: a -> b
cast :: (Typeable a, Typeable b) => a -> Maybe b
Which, you might think of as being implemented using unsafeCoerce and a function typeOf :: Typeable a => a -> TypeRep where TypeRep are unforgeable, runtime tokens which reflect the type of a value. Then we have
cast :: (Typeable a, Typeable b) => a -> Maybe b
cast a = if (typeOf a == typeOf b) then Just b else Nothing
where b = unsafeCoerce a
Thus, cast is able to ensure that the types of a and b really are the same at runtime, and it can decide to return Nothing if they are not. As an example:
{-# LANGUAGE DeriveDataTypeable #-}
{-# LANGUAGE ExistentialQuantification #-}
data A = A deriving (Show, Typeable)
data B = B deriving (Show, Typeable)
data Forget = forall a . Typeable a => Forget a
getAnA :: Forget -> Maybe A
getAnA (Forget something) = cast something
which we can run as follows
> getAnA (Forget A)
Just A
> getAnA (Forget B)
Nothing
So if we compare this usage of cast with unsafeCoerce we see that it can achieve some of the same functionality. In particular, it allows us to rediscover information that may have been forgotten by ExistentialQuantification. However, cast manually checks the types at runtime to ensure that they are truly the same and thus cannot be used unsafely. To do this, it demands that both the source and target types allow for runtime reflection of their types via the Typeable class.
The only time I ever felt compelled to use unsafeCoerce was on finite natural numbers.
{-# LANGUAGE DataKinds, GADTs, TypeFamilies, StandaloneDeriving #-}
data Nat = Z | S Nat deriving (Eq, Show)
data Fin (n :: Nat) :: * where
FZ :: Fin (S n)
FS :: Fin n -> Fin (S n)
deriving instance Show (Fin n)
Fin n is a singly linked data structure that is statically ensured to be smaller than the n type level natural number by which it is parametrized.
-- OK, 1 < 2
validFin :: Fin (S (S Z))
validFin = FS FZ
-- type error, 2 < 2 is false
invalidFin :: Fin (S (S Z))
invalidFin = FS (FS FZ)
Fin can be used to safely index into various data structures. It's pretty standard in dependently typed languages, though not in Haskell.
Sometimes we want to convert a value of Fin n to Fin m where m is greater than n.
relaxFin :: Fin n -> Fin (S n)
relaxFin FZ = FZ
relaxFin (FS n) = FS (relaxFin n)
relaxFin is a no-op by definition, but traversing the value is still required for the types to check out. So we might just use unsafeCoerce instead of relaxFin. More pronounced gains in speed can result from coercing larger data structures that contain Fin-s (for example, you could have lambda terms with Fin-s as bound variables).
This is an admittedly exotic example, but I find it interesting in the sense that it's pretty safe: I can't really think of ways for external libraries or safe user code to mess this up. I might be wrong though and I'd be eager to hear about potential safety issues.
There is no use of unsafeCoerce I can really recommend, but I can see that in some cases such a thing might be useful.
The first use that springs to mind is the implementation of the Typeable-related routines. In particular cast :: (Typeable a, Typeable b) => a -> Maybe b achieves a type-safe behaviour, so it is safe to use, yet it has to play dirty tricks in its implementation.
Maybe unsafeCoerce can find some use when importing FFI subroutines to force types to match. After all, FFI already allows to import impure C functions as pure ones, so it is intrinsecally usafe. Note that "unsafe" does not mean impossible to use, but just "putting the burden of proof on the programmer".
Finally, pretend that sortBy did not exist. Consider then this example:
-- Like Int, but using the opposite ordering
newtype Rev = Rev { unRev :: Int }
instance Ord Rev where compare (Rev x) (Rev y) = compare y x
sortDescending :: [Int] -> [Int]
sortDescending = map unRev . sort . map Rev
The code above works, but feels silly IMHO. We perform two maps using functions such as Rev,unRev which we know to be no-ops at runtime. So we just scan the list twice for no reason, but that of convincing the compiler to use the right Ord instance.
The performance impact of these maps should be small since we also sort the list. Yet it is tempting to rewrite map Rev as unsafeCoerce :: [Int]->[Rev] and save some time.
Note that having a coercing function
castNewtype :: IsNewtype t1 t2 => f t2 -> f t1
where the constraint means that t1 is a newtype for t2 would help, but it would be quite dangerous. Consider
castNewtype :: Data.Set Int -> Data.Set Rev
The above would cause the data structure invariant to break, since we are changing the ordering underneath! Since Data.Set is implemented as a binary search tree, it would cause quite a large damage.

How does one statisfy a class constraint in an instance of a class that requires a type constructor rather than a concrete type?

I'm currently in Chapter 8 of Learn you a Haskell, and I've reached the section on the Functor typeclass. In said section the author gives examples of how different types could be made instances of the class (e.g Maybe, a custom Tree type, etc.) Seeing this, I decided to (for fun and practice) try implementing an instance for the Data.Set type; in all of this ignoring Data.Set.map, of course.
The actual instance itself is pretty straight-forward, and I wrote it as:
instance Functor Set.Set where
fmap f empty = Set.empty
fmap f s = Set.fromList $ map f (Set.elems s)
But, since I happen to use the function fromList this brings in a class constraint calling for the types used in the Set to be Ord, as is explained by a compiler error:
Error occurred
ERROR line 4 - Cannot justify constraints in instance member binding
*** Expression : fmap
*** Type : Functor Set => (a -> b) -> Set a -> Set b
*** Given context : Functor Set
*** Constraints : Ord b
See: Live Example
I tried putting a constraint on the instance, or adding a type signature to fmap, but neither succeeded (both were compiler errors as well.)
Given a situation like this, how can a constraint be fulfilled and satisfied? Is there any possible way?
Thanks in advance! :)
Unfortunately, there is no easy way to do this with the standard Functor class. This is why Set does not come with a Functor instance by default: you cannot write one.
This is something of a problem, and there have been some suggested solutions (e.g. defining the Functor class in a different way), but I do not know if there is a consensus on how to best handle this.
I believe one approach is to rewrite the Functor class using constraint kinds to reify the additional constraints instances of the new Functor class may have. This would let you specify that Set has to contain types from the Ord class.
Another approach uses only multi-parameter classes. I could only find the article about doing this for the Monad class, but making Set part of Monad faces the same problems as making it part of Functor. It's called Restricted Monads.
The basic gist of using multi-parameter classes here seems to be something like this:
class Functor' f a b where
fmap' :: (a -> b) -> f a -> f b
instance (Ord a, Ord b) => Functor' Data.Set.Set a b where
fmap' = Data.Set.map
Essentially, all you're doing here is making the types in the Set also part of the class. This then lets you constrain what these types can be when you write an instance of that class.
This version of Functor needs two extensions: MultiParamTypeClasses and FlexibleInstances. (You need the first extension to be able to define the class and the second extension to be able to define an instance for Set.)
Haskell : An example of a Foldable which is not a Functor (or not Traversable)? has a good discussion about this.
This is impossible. The purpose of the Functor class is that if you have Functor f => f a, you can replace the a with whatever you like. The class is not allowed to constrain you to only return this or that. Since Set requires that its elements satisfy certain constraints (and indeed this isn't an implementation detail but really an essential property of sets), it doesn't satisfy the requirements of Functor.
There are, as mentioned in another answer, ways of developing a class like Functor that does constrain you in that way, but it's really a different class, because it gives the user of the class fewer guarantees (you don't get to use this with whatever type parameter you want), in exchange for becoming applicable to a wider range of types. That is, after all, the classic tradeoff of defining a property of types: the more types you want to satisfy it, the less they must be forced to satisfy.
(Another interesting example of where this shows up is the MonadPlus class. In particular, for every instance MonadPlus TC you can make an instance Monoid (TC a), but you can't always go the other way around. Hence the Monoid (Maybe a) instance is different from the MonadPlus Maybe instance, because the former can restrict the a but the latter can't.)
You can do this using a CoYoneda Functor.
{-# LANGUAGE GADTs #-}
data CYSet a where
CYSet :: (Ord a) => Set.Set a -> (a -> b) -> CYSet b
liftCYSet :: (Ord a) => Set.Set a -> CYSet a
liftCYSet s = CYSet s id
lowerCYSet :: (Ord a) => CYSet a -> Set.Set a
lowerCYSet (CYSet s f) = Set.fromList $ map f $ Set.elems s
instance Functor CYSet where
fmap f (CYSet s g) = CYSet s (f . g)
main = putStrLn . show
$ lowerCYSet
$ fmap (\x -> x `mod` 3)
$ fmap abs
$ fmap (\x -> x - 5)
$ liftCYSet $ Set.fromList [1..10]
-- prints "fromList [0,1,2]"

Why do I have to specify typeclass in function if it was declared in data definition?

If I have an ADT with specified typeclass restrictions I still have to specify the same typeclass for each function using this data type. What the reason for this and how can I reduce unnecessary typing?
E.g.:
data Eq a => C a = V a
g :: C a -> Bool
g (V a) = a == a
I got:
test.hs:32:13:
No instance for (Eq a)
arising from a use of `=='
In the expression: a == a
In an equation for `g': g (V a) = a == a
Failed, modules loaded: none.
While:
g :: Eq a => C a -> Bool
Works fine, but if I have a long chain of functions it becomes a burden to specify a typeclass everytime:
f :: Eq a => C a -> Bool
f a = g a
It's generally considered a bad idea to put a typeclass restriction on your ADT. Instead, leave it off and code normally using (==) wherever you have to. Your Eq a dependency will percolate up some of your functions and not others.
Because the Haskell Report says so, basically. It's generally regarded as somewhat silly. Quoth the GHC User Guide:
All this behaviour contrasts with Haskell 98's peculiar treatment of contexts on a data type declaration (Section 4.2.1 of the Haskell 98 Report). In Haskell 98 the definition
data Eq a => Set' a = MkSet' [a]
gives MkSet' the same type as MkSet above. But instead of making available an (Eq a) constraint, pattern-matching on MkSet' requires an (Eq a) constraint! GHC faithfully implements this behaviour, odd though it is. But for GADT-style declarations, GHC's behaviour is much more useful, as well as much more intuitive.
Putting contexts on regular data definitions is discouraged and may (will?) be removed from the language at some point. Either put the context only on the function (which is what actually needs it, anyhow), or use GADT-style syntax to get the behavior you expected.

Resources