In-line block and Function block, What is different? - programming-languages

In Programming Language Theory,
Block which is related with stack frame has two kinds. In-line block and function block.
What is different between In-line block and function block?
And assume there is code like below.
int x = 1;
g(z) = z + x;
According to In-line block, Is function g nested to variable x?

Function block :
void func(){...}; // in c or c++
(defun func ...) // in clisp
fun func() = ... // in ml
The Function Block is the block that wraps the function.
In C, when the function returns, the function's activation records is deleted from stack.
however, In functional language like ML, CLISP, function's return don't always means deletion of stack frame.
Because the function can be used later.
In-line block is the block that shows nested structure.
int x = 1;
g(z) = z + x;
When the function g uses In-line block, the function g takes the variable x as 1. the function g don't know x's value with only the function g's activation record. however the reason the function g can know x's value is it use static link, and static link points the most nearest nesting block.
The difference between function block and inline block is that function block always is not deleted from stack frame when the function returns.

Related

Confused about Node js two brackets function

I'm trying to understand the recursive function in NodeJS, but I'm still confused about the following code and output:
var firstf = function () {
var counter = 0;
return function () {
console.log("counter = " + counter);
return counter += 1;
}
};
var add = firstf();
add();//output 0
add();//output 1
add();//output 2
firstf()();//output 0
firstf()();//output 0
firstf()();//output 0
I can understand three add() functions output 0,1,2, but I could not understand why three firstf()() output 0,0,0. what does two ()() mean please?
Also one follow up question: for this line: var add = firstf();
the variable add will represents the return function as:
function () {
console.log("counter = " + counter);
return counter += 1;
}
Ok, the question is that how could this function see the variable counter, since counter in upper level, not defined in this inner function.
There is no recursion here. Recursion is where a function calls itself. This is called a closure. Because the inner function contains references to variables in the outer function's scope. Here's a good article on closures. From that article:
A closure is the combination of a function bundled together (enclosed)
with references to its surrounding state (the lexical environment).
In
other words, a closure gives you access to an outer function’s scope
from an inner function. In JavaScript, closures are created every time
a function is created, at function creation time. To use a closure,
define a function inside another function and expose it.
To expose a
function, return it or pass it to another function. The inner function
will have access to the variables in the outer function scope, even
after the outer function has returned.
Now, let's diagnose exactly what is happening with firstf()().
First that calls firstf(). That initializes the internal counter to 0 and returns a new function.
Then, the second () executes that returned function which returns the value of counter which is 0 and increments it.
Then, you call firstf()() again. That initializes a new counter variable to 0 and returns a new function. Then, the second () calls that function and returns the new counter value of 0 and then increments it.
So, that explains why successive calls to firstf()() just keep returning 0. You keep making a new function and a new counter variable each time.
When you do var add = firstf(); and then call add(), you are storing the returned function and then calling the same function over and over again. That will keep using the same internal counter variable and thus you will see the returned value going up as that internal counter variable is incremented each time.
what does two ()() mean please?
Each () attempts to execute a function. In firstf()(), the first () executes firstf() and gets the function that it returns. The second () then executes that returned function and gets whatever it returns (the counter value).

Programming Language Evaluation Strategies

Could you please explain differences between and definition of call by value, call by reference, call by name and call by need?
Call by value
Call-by-value evaluation is the most common evaluation strategy, used in languages as different as C and Scheme. In call-by-value, the argument expression is evaluated, and the resulting value is bound to the corresponding variable in the function (frequently by copying the value into a new memory region). If the function or procedure is able to assign values to its parameters, only its local copy is assigned — that is, anything passed into a function call is unchanged in the caller's scope when the function returns.
Call by reference
In call-by-reference evaluation (also referred to as pass-by-reference), a function receives an implicit reference to a variable used as argument, rather than a copy of its value. This typically means that the function can modify (i.e. assign to) the variable used as argument—something that will be seen by its caller. Call-by-reference can therefore be used to provide an additional channel of communication between the called function and the calling function. A call-by-reference language makes it more difficult for a programmer to track the effects of a function call, and may introduce subtle bugs.
differences
call by value example
If data is passed by value, the data is copied from the variable used in for example main() to a variable used by the function. So if the data passed (that is stored in the function variable) is modified inside the function, the value is only changed in the variable used inside the function. Let’s take a look at a call by value example:
#include <stdio.h>
void call_by_value(int x) {
printf("Inside call_by_value x = %d before adding 10.\n", x);
x += 10;
printf("Inside call_by_value x = %d after adding 10.\n", x);
}
int main() {
int a=10;
printf("a = %d before function call_by_value.\n", a);
call_by_value(a);
printf("a = %d after function call_by_value.\n", a);
return 0;
}
The output of this call by value code example will look like this:
a = 10 before function call_by_value.
Inside call_by_value x = 10 before adding 10.
Inside call_by_value x = 20 after adding 10.
a = 10 after function call_by_value.
call by reference example
If data is passed by reference, a pointer to the data is copied instead of the actual variable as is done in a call by value. Because a pointer is copied, if the value at that pointers address is changed in the function, the value is also changed in main(). Let’s take a look at a code example:
#include <stdio.h>
void call_by_reference(int *y) {
printf("Inside call_by_reference y = %d before adding 10.\n", *y);
(*y) += 10;
printf("Inside call_by_reference y = %d after adding 10.\n", *y);
}
int main() {
int b=10;
printf("b = %d before function call_by_reference.\n", b);
call_by_reference(&b);
printf("b = %d after function call_by_reference.\n", b);
return 0;
}
The output of this call by reference source code example will look like this:
b = 10 before function call_by_reference.
Inside call_by_reference y = 10 before adding 10.
Inside call_by_reference y = 20 after adding 10.
b = 20 after function call_by_reference.
when to use which
One advantage of the call by reference method is that it is using pointers, so there is no doubling of the memory used by the variables (as with the copy of the call by value method). This is of course great, lowering the memory footprint is always a good thing. So why don’t we just make all the parameters call by reference?
There are two reasons why this is not a good idea and that you (the programmer) need to choose between call by value and call by reference. The reason are: side effects and privacy. Unwanted side effects are usually caused by inadvertently changes that are made to a call by reference parameter. Also in most cases you want the data to be private and that someone calling a function only be able to change if you want it. So it is better to use a call by value by default and only use call by reference if data changes are expected.
call by name
In call-by-name evaluation, the arguments to a function are not evaluated before the function is called — rather, they are substituted directly into the function body (using capture-avoiding substitution) and then left to be evaluated whenever they appear in the function.
call by need
Lazy evaluation, or call-by-need is an evaluation strategy which delays the evaluation of an expression until its value is needed (non-strict evaluation) and which also avoids repeated evaluations

Explanation of currying in simple terms [duplicate]

I've seen references to curried functions in several articles and blogs but I can't find a good explanation (or at least one that makes sense!)
Currying is when you break down a function that takes multiple arguments into a series of functions that each take only one argument. Here's an example in JavaScript:
function add (a, b) {
return a + b;
}
add(3, 4); // returns 7
This is a function that takes two arguments, a and b, and returns their sum. We will now curry this function:
function add (a) {
return function (b) {
return a + b;
}
}
This is a function that takes one argument, a, and returns a function that takes another argument, b, and that function returns their sum.
add(3)(4); // returns 7
var add3 = add(3); // returns a function
add3(4); // returns 7
The first statement returns 7, like the add(3, 4) statement.
The second statement defines a new function called add3 that will
add 3 to its argument. (This is what some may call a closure.)
The third statement uses the add3 operation to add 3 to 4, again
producing 7 as a result.
In an algebra of functions, dealing with functions that take multiple arguments (or equivalent one argument that's an N-tuple) is somewhat inelegant -- but, as Moses Schönfinkel (and, independently, Haskell Curry) proved, it's not needed: all you need are functions that take one argument.
So how do you deal with something you'd naturally express as, say, f(x,y)? Well, you take that as equivalent to f(x)(y) -- f(x), call it g, is a function, and you apply that function to y. In other words, you only have functions that take one argument -- but some of those functions return other functions (which ALSO take one argument;-).
As usual, wikipedia has a nice summary entry about this, with many useful pointers (probably including ones regarding your favorite languages;-) as well as slightly more rigorous mathematical treatment.
Here's a concrete example:
Suppose you have a function that calculates the gravitational force acting on an object. If you don't know the formula, you can find it here. This function takes in the three necessary parameters as arguments.
Now, being on the earth, you only want to calculate forces for objects on this planet. In a functional language, you could pass in the mass of the earth to the function and then partially evaluate it. What you'd get back is another function that takes only two arguments and calculates the gravitational force of objects on earth. This is called currying.
It can be a way to use functions to make other functions.
In javascript:
let add = function(x){
return function(y){
return x + y
};
};
Would allow us to call it like so:
let addTen = add(10);
When this runs the 10 is passed in as x;
let add = function(10){
return function(y){
return 10 + y
};
};
which means we are returned this function:
function(y) { return 10 + y };
So when you call
addTen();
you are really calling:
function(y) { return 10 + y };
So if you do this:
addTen(4)
it's the same as:
function(4) { return 10 + 4} // 14
So our addTen() always adds ten to whatever we pass in. We can make similar functions in the same way:
let addTwo = add(2) // addTwo(); will add two to whatever you pass in
let addSeventy = add(70) // ... and so on...
Now the obvious follow up question is why on earth would you ever want to do that? It turns what was an eager operation x + y into one that can be stepped through lazily, meaning we can do at least two things
1. cache expensive operations
2. achieve abstractions in the functional paradigm.
Imagine our curried function looked like this:
let doTheHardStuff = function(x) {
let z = doSomethingComputationallyExpensive(x)
return function (y){
z + y
}
}
We could call this function once, then pass around the result to be used in lots of places, meaning we only do the computationally expensive stuff once:
let finishTheJob = doTheHardStuff(10)
finishTheJob(20)
finishTheJob(30)
We can get abstractions in a similar way.
Currying is a transformation that can be applied to functions to allow them to take one less argument than previously.
For example, in F# you can define a function thus:-
let f x y z = x + y + z
Here function f takes parameters x, y and z and sums them together so:-
f 1 2 3
Returns 6.
From our definition we can can therefore define the curry function for f:-
let curry f = fun x -> f x
Where 'fun x -> f x' is a lambda function equivilent to x => f(x) in C#. This function inputs the function you wish to curry and returns a function which takes a single argument and returns the specified function with the first argument set to the input argument.
Using our previous example we can obtain a curry of f thus:-
let curryf = curry f
We can then do the following:-
let f1 = curryf 1
Which provides us with a function f1 which is equivilent to f1 y z = 1 + y + z. This means we can do the following:-
f1 2 3
Which returns 6.
This process is often confused with 'partial function application' which can be defined thus:-
let papply f x = f x
Though we can extend it to more than one parameter, i.e.:-
let papply2 f x y = f x y
let papply3 f x y z = f x y z
etc.
A partial application will take the function and parameter(s) and return a function that requires one or more less parameters, and as the previous two examples show is implemented directly in the standard F# function definition so we could achieve the previous result thus:-
let f1 = f 1
f1 2 3
Which will return a result of 6.
In conclusion:-
The difference between currying and partial function application is that:-
Currying takes a function and provides a new function accepting a single argument, and returning the specified function with its first argument set to that argument. This allows us to represent functions with multiple parameters as a series of single argument functions. Example:-
let f x y z = x + y + z
let curryf = curry f
let f1 = curryf 1
let f2 = curryf 2
f1 2 3
6
f2 1 3
6
Partial function application is more direct - it takes a function and one or more arguments and returns a function with the first n arguments set to the n arguments specified. Example:-
let f x y z = x + y + z
let f1 = f 1
let f2 = f 2
f1 2 3
6
f2 1 3
6
A curried function is a function of several arguments rewritten such that it accepts the first argument and returns a function that accepts the second argument and so on. This allows functions of several arguments to have some of their initial arguments partially applied.
Currying means to convert a function of N arity into N functions of arity 1. The arity of the function is the number of arguments it requires.
Here is the formal definition:
curry(f) :: (a,b,c) -> f(a) -> f(b)-> f(c)
Here is a real world example that makes sense:
You go to ATM to get some money. You swipe your card, enter pin number and make your selection and then press enter to submit the "amount" alongside the request.
here is the normal function for withdrawing money.
const withdraw=(cardInfo,pinNumber,request){
// process it
return request.amount
}
In this implementation function expects us entering all arguments at once. We were going to swipe the card, enter the pin and make the request, then function would run. If any of those steps had issue, you would find out after you enter all the arguments. With curried function, we would create higher arity, pure and simple functions. Pure functions will help us easily debug our code.
this is Atm with curried function:
const withdraw=(cardInfo)=>(pinNumber)=>(request)=>request.amount
ATM, takes the card as input and returns a function that expects pinNumber and this function returns a function that accepts the request object and after the successful process, you get the amount that you requested. Each step, if you had an error, you will easily predict what went wrong. Let's say you enter the card and got error, you know that it is either related to the card or machine but not the pin number. Or if you entered the pin and if it does not get accepted you know that you entered the pin number wrong. You will easily debug the error.
Also, each function here is reusable, so you can use the same functions in different parts of your project.
Currying is translating a function from callable as f(a, b, c) into callable as f(a)(b)(c).
Otherwise currying is when you break down a function that takes multiple arguments into a series of functions that take part of the arguments.
Literally, currying is a transformation of functions: from one way of calling into another. In JavaScript, we usually make a wrapper to keep the original function.
Currying doesn’t call a function. It just transforms it.
Let’s make curry function that performs currying for two-argument functions. In other words, curry(f) for two-argument f(a, b) translates it into f(a)(b)
function curry(f) { // curry(f) does the currying transform
return function(a) {
return function(b) {
return f(a, b);
};
};
}
// usage
function sum(a, b) {
return a + b;
}
let carriedSum = curry(sum);
alert( carriedSum(1)(2) ); // 3
As you can see, the implementation is a series of wrappers.
The result of curry(func) is a wrapper function(a).
When it is called like sum(1), the argument is saved in the Lexical Environment, and a new wrapper is returned function(b).
Then sum(1)(2) finally calls function(b) providing 2, and it passes the call to the original multi-argument sum.
Here's a toy example in Python:
>>> from functools import partial as curry
>>> # Original function taking three parameters:
>>> def display_quote(who, subject, quote):
print who, 'said regarding', subject + ':'
print '"' + quote + '"'
>>> display_quote("hoohoo", "functional languages",
"I like Erlang, not sure yet about Haskell.")
hoohoo said regarding functional languages:
"I like Erlang, not sure yet about Haskell."
>>> # Let's curry the function to get another that always quotes Alex...
>>> am_quote = curry(display_quote, "Alex Martelli")
>>> am_quote("currying", "As usual, wikipedia has a nice summary...")
Alex Martelli said regarding currying:
"As usual, wikipedia has a nice summary..."
(Just using concatenation via + to avoid distraction for non-Python programmers.)
Editing to add:
See http://docs.python.org/library/functools.html?highlight=partial#functools.partial,
which also shows the partial object vs. function distinction in the way Python implements this.
Here is the example of generic and the shortest version for function currying with n no. of params.
const add = a => b => b ? add(a + b) : a;
const add = a => b => b ? add(a + b) : a;
console.log(add(1)(2)(3)(4)());
Currying is one of the higher-order functions of Java Script.
Currying is a function of many arguments which is rewritten such that it takes the first argument and return a function which in turns uses the remaining arguments and returns the value.
Confused?
Let see an example,
function add(a,b)
{
return a+b;
}
add(5,6);
This is similar to the following currying function,
function add(a)
{
return function(b){
return a+b;
}
}
var curryAdd = add(5);
curryAdd(6);
So what does this code means?
Now read the definition again,
Currying is a function of many arguments which is rewritten such that it takes first argument and return a function which in turns uses the remaining arguments and returns the value.
Still, Confused?
Let me explain in deep!
When you call this function,
var curryAdd = add(5);
It will return you a function like this,
curryAdd=function(y){return 5+y;}
So, this is called higher-order functions. Meaning, Invoking one function in turns returns another function is an exact definition for higher-order function. This is the greatest advantage for the legend, Java Script.
So come back to the currying,
This line will pass the second argument to the curryAdd function.
curryAdd(6);
which in turns results,
curryAdd=function(6){return 5+6;}
// Which results in 11
Hope you understand the usage of currying here.
So, Coming to the advantages,
Why Currying?
It makes use of code reusability.
Less code, Less Error.
You may ask how it is less code?
I can prove it with ECMA script 6 new feature arrow functions.
Yes! ECMA 6, provide us with the wonderful feature called arrow functions,
function add(a)
{
return function(b){
return a+b;
}
}
With the help of the arrow function, we can write the above function as follows,
x=>y=>x+y
Cool right?
So, Less Code and Fewer bugs!!
With the help of these higher-order function one can easily develop a bug-free code.
I challenge you!
Hope, you understood what is currying. Please feel free to comment over here if you need any clarifications.
Thanks, Have a nice day!
If you understand partial you're halfway there. The idea of partial is to preapply arguments to a function and give back a new function that wants only the remaining arguments. When this new function is called it includes the preloaded arguments along with whatever arguments were supplied to it.
In Clojure + is a function but to make things starkly clear:
(defn add [a b] (+ a b))
You may be aware that the inc function simply adds 1 to whatever number it's passed.
(inc 7) # => 8
Let's build it ourselves using partial:
(def inc (partial add 1))
Here we return another function that has 1 loaded into the first argument of add. As add takes two arguments the new inc function wants only the b argument -- not 2 arguments as before since 1 has already been partially applied. Thus partial is a tool from which to create new functions with default values presupplied. That is why in a functional language functions often order arguments from general to specific. This makes it easier to reuse such functions from which to construct other functions.
Now imagine if the language were smart enough to understand introspectively that add wanted two arguments. When we passed it one argument, rather than balking, what if the function partially applied the argument we passed it on our behalf understanding that we probably meant to provide the other argument later? We could then define inc without explicitly using partial.
(def inc (add 1)) #partial is implied
This is the way some languages behave. It is exceptionally useful when one wishes to compose functions into larger transformations. This would lead one to transducers.
Curry can simplify your code. This is one of the main reasons to use this. Currying is a process of converting a function that accepts n arguments into n functions that accept only one argument.
The principle is to pass the arguments of the passed function, using the closure (closure) property, to store them in another function and treat it as a return value, and these functions form a chain, and the final arguments are passed in to complete the operation.
The benefit of this is that it can simplify the processing of parameters by dealing with one parameter at a time, which can also improve the flexibility and readability of the program. This also makes the program more manageable. Also dividing the code into smaller pieces would make it reuse-friendly.
For example:
function curryMinus(x)
{
return function(y)
{
return x - y;
}
}
var minus5 = curryMinus(1);
minus5(3);
minus5(5);
I can also do...
var minus7 = curryMinus(7);
minus7(3);
minus7(5);
This is very great for making complex code neat and handling of unsynchronized methods etc.
I found this article, and the article it references, useful, to better understand currying:
http://blogs.msdn.com/wesdyer/archive/2007/01/29/currying-and-partial-function-application.aspx
As the others mentioned, it is just a way to have a one parameter function.
This is useful in that you don't have to assume how many parameters will be passed in, so you don't need a 2 parameter, 3 parameter and 4 parameter functions.
As all other answers currying helps to create partially applied functions. Javascript does not provide native support for automatic currying. So the examples provided above may not help in practical coding. There is some excellent example in livescript (Which essentially compiles to js)
http://livescript.net/
times = (x, y) --> x * y
times 2, 3 #=> 6 (normal use works as expected)
double = times 2
double 5 #=> 10
In above example when you have given less no of arguments livescript generates new curried function for you (double)
A curried function is applied to multiple argument lists, instead of just
one.
Here is a regular, non-curried function, which adds two Int
parameters, x and y:
scala> def plainOldSum(x: Int, y: Int) = x + y
plainOldSum: (x: Int,y: Int)Int
scala> plainOldSum(1, 2)
res4: Int = 3
Here is similar function that’s curried. Instead
of one list of two Int parameters, you apply this function to two lists of one
Int parameter each:
scala> def curriedSum(x: Int)(y: Int) = x + y
curriedSum: (x: Int)(y: Int)Intscala> second(2)
res6: Int = 3
scala> curriedSum(1)(2)
res5: Int = 3
What’s happening here is that when you invoke curriedSum, you actually get two traditional function invocations back to back. The first function
invocation takes a single Int parameter named x , and returns a function
value for the second function. This second function takes the Int parameter
y.
Here’s a function named first that does in spirit what the first traditional
function invocation of curriedSum would do:
scala> def first(x: Int) = (y: Int) => x + y
first: (x: Int)(Int) => Int
Applying 1 to the first function—in other words, invoking the first function
and passing in 1 —yields the second function:
scala> val second = first(1)
second: (Int) => Int = <function1>
Applying 2 to the second function yields the result:
scala> second(2)
res6: Int = 3
An example of currying would be when having functions you only know one of the parameters at the moment:
For example:
func aFunction(str: String) {
let callback = callback(str) // signature now is `NSData -> ()`
performAsyncRequest(callback)
}
func callback(str: String, data: NSData) {
// Callback code
}
func performAsyncRequest(callback: NSData -> ()) {
// Async code that will call callback with NSData as parameter
}
Here, since you don't know the second parameter for callback when sending it to performAsyncRequest(_:) you would have to create another lambda / closure to send that one to the function.
Most of the examples in this thread are contrived (adding numbers). These are useful for illustrating the concept, but don't motivate when you might actually use currying in an app.
Here's a practical example from React, the JavaScript user interface library. Currying here illustrates the closure property.
As is typical in most user interface libraries, when the user clicks a button, a function is called to handle the event. The handler typically modifies the application's state and triggers the interface to re-render.
Lists of items are common user interface components. Each item might have an identifier associated with it (usually related to a database record). When the user clicks a button to, for example, "like" an item in the list, the handler needs to know which button was clicked.
Currying is one approach for achieving the binding between id and handler. In the code below, makeClickHandler is a function that accepts an id and returns a handler function that has the id in its scope.
The inner function's workings aren't important for this discussion. But if you're curious, it searches through the array of items to find an item by id and increments its "likes", triggering another render by setting the state. State is immutable in React so it takes a bit more work to modify the one value than you might expect.
You can think of invoking the curried function as "stripping" off the outer function to expose an inner function ready to be called. That new inner function is the actual handler passed to React's onClick. The outer function is a closure for the loop body to specify the id that will be in scope of a particular inner handler function.
const List = () => {
const [items, setItems] = React.useState([
{name: "foo", likes: 0},
{name: "bar", likes: 0},
{name: "baz", likes: 0},
].map(e => ({...e, id: crypto.randomUUID()})));
// .----------. outer func inner func
// | currying | | |
// `----------` V V
const makeClickHandler = (id) => (event) => {
setItems(prev => {
const i = prev.findIndex(e => e.id === id);
const cpy = {...prev[i]};
cpy.likes++;
return [
...prev.slice(0, i),
cpy,
...prev.slice(i + 1)
];
});
};
return (
<ul>
{items.map(({name, likes, id}) =>
<li key={id}>
<button
onClick={
/* strip off first function layer to get a click
handler bound to `id` and pass it to onClick */
makeClickHandler(id)
}
>
{name} ({likes} likes)
</button>
</li>
)}
</ul>
);
};
ReactDOM.createRoot(document.querySelector("#app"))
.render(<List />);
button {
font-family: monospace;
font-size: 2em;
}
<script crossorigin src="https://unpkg.com/react#18/umd/react.development.js"></script>
<script crossorigin src="https://unpkg.com/react-dom#18/umd/react-dom.development.js"></script>
<div id="app"></div>
Here you can find a simple explanation of currying implementation in C#. In the comments, I have tried to show how currying can be useful:
public static class FuncExtensions {
public static Func<T1, Func<T2, TResult>> Curry<T1, T2, TResult>(this Func<T1, T2, TResult> func)
{
return x1 => x2 => func(x1, x2);
}
}
//Usage
var add = new Func<int, int, int>((x, y) => x + y).Curry();
var func = add(1);
//Obtaining the next parameter here, calling later the func with next parameter.
//Or you can prepare some base calculations at the previous step and then
//use the result of those calculations when calling the func multiple times
//with different input parameters.
int result = func(1);
"Currying" is the process of taking the function of multiple arguments and converting it into a series of functions that each take a single argument and return a function of a single argument, or in the case of the final function, return the actual result.
The other answers have said what currying is: passing fewer arguments to a curried function than it expects is not an error, but instead returns a function that expects the rest of the arguments and returns the same result as if you had passed them all in at once.
I’ll try to motivate why it’s useful. It’s one of those tools that you never realized you needed until you do. Currying is above all a way to make your programs more expressive - you can combine operations together with less code.
For example, if you have a curried function add, you can write the equivalent of JS x => k + x (or Python lambda x: k + x or Ruby { |x| k + x } or Lisp (lambda (x) (+ k x)) or …) as just add(k). In Haskelll you can even use the operator: (k +) or (+ k) (The two forms let you curry either way for non-commutative operators: (/ 9) is a function that divides a number by 9, which is probably the more common use case, but you also have (9 /) for a function that divides 9 by its argument.) Besides being shorter, the curried version contains no made-up parameter name like the x found in all the other versions. It’s not needed. You’re defining a function that adds some constant k to a number, and you don’t need to give that number a name just to talk about the function. Or even to define it. This is an example of what’s called “point-free style”. You can combine operations together given nothing but the operations themselves. You don’t have to declare anonymous functions that do nothing but apply some operation to their argument, because *that’s what the operations already are.
This becomes very handy with higher-order functions when they’re defined in a currying-friendly way. For instance, a curried map(fn, list) let’s you define a mapper with just map(fn) that can be applied it to any list later. But currying a map defined instead as map(list, fn) just lets you define a function that will apply some other function to a constant list, which is probably less generally useful.
Currying reduces the need for things like pipes and threading. In Clojure, you might define a temperature conversion function using the threading macro ->: (defn f2c (deg) (-> deg (- 32) (* 5) (/ 9)). That’s cool, it reads nicely left to right (“subtract 32, multiply by 5 and divide by 9.”) and you only have to mention the parameter twice instead of once for every suboperation… but it only works because -> is a macro that transforms the whole form syntactically before anything is evaluated. It turns into a regular nested expression behind the scenes: (/ (* (- deg 32) 5) 9). If the math ops were curried, you wouldn’t need a macro to combine them so nicely, as in Haskell let f2c = (subtract 32) & (* 5) & (/ 9). (Although it would admittedly be more idiomatic to use function composition, which reads right to left: (/ 9) . (* 5) . (subtract 32).)
Again, it’s hard to find good demo examples; currying is most useful in complex cases where it really helps the readability of the solution, but those take so much explanation just to get you to understand the problem that the overall lesson about currying can get lost in the noise.
There is an example of "Currying in ReasonML".
let run = () => {
Js.log("Curryed function: ");
let sum = (x, y) => x + y;
Printf.printf("sum(2, 3) : %d\n", sum(2, 3));
let per2 = sum(2);
Printf.printf("per2(3) : %d\n", per2(3));
};
Below is one of currying example in JavaScript, here the multiply return the function which is used to multiply x by two.
const multiply = (presetConstant) => {
return (x) => {
return presetConstant * x;
};
};
const multiplyByTwo = multiply(2);
// now multiplyByTwo is like below function & due to closure property in JavaScript it will always be able to access 'presetConstant' value
// const multiplyByTwo = (x) => {
// return presetConstant * x;
// };
console.log(`multiplyByTwo(8) : ${multiplyByTwo(8)}`);
Output
multiplyByTwo(8) : 16

Explanation of the statement below about Groovy closures.

I'm reading this: A closure looks a lot like a regular Java or Groovy code block, but actually it's not the same. The code within a regular code block (whether its a method block, static block, synchronized block, or just a block of code) is executed by the virtual machine as soon as it's encountered. With closures the statements within the curly brackets are not executed until the call() is made on the closure. In the previous example the closure is declared in line, but it's not executed at that time. It will only execute if the call() is explicitly made on the closure
And I'm thinking, how is this true, in Java if you have an instance method, the code is only executed when the method is called then how are they saying above that is executed by the VM as soon as it sees it ?
If I have a method func(){int a =5; return a+5;} this will be executed only when called is my understanding.
The description might be better taken with just synchronized block or regular scope braces. What it's attempting to show is that when the thread of execution hits a regular code block, it continues on executing the contents. With closure definitions, the code in the block is not immediately executed - it's used to define/instantiate a closure object (say, clos) which contains that logic, and which can be later executed via clos.call() (or just clos()).
example:
def x = 1
synchronized(this) {
x = 1000
}
println x //x == 1000
vs.
def x = 1
Closure clos = {
x = 1000
}
println x // x == 1
clos() // or clos.call()
println x // x == 1000
W/R/T method/static blocks: It's unclear to me if there is some nuanced way in which "encountered" and "executed" can be used in a JVM context that makes that part of the statement correct, but for practical purposes, it's at best misleading. Methods are still only executed when called, and not by virtue of their declarations being located in the apparent path of code execution, as the following can be run in groovyConsole to show:
def x = 1
void methodA() {
x = 1000
}
def b = {
x = x + 1
}
println x // x is still 1
Another analogy, which is not necessarily technically accurate, is to think about Closures as anonymous inner classes that have a single method (the body of the closure).
Doing either closure.call() or closure() (short-hand for call()), invokes that single method.
Closures have additional features, of course, but I think that this is a good way to think about the basics.

How can I create function pointers from a string input in MATLAB?

If I use the inline function in MATLAB I can create a single function name that could respond differently depending on previous choices:
if (someCondition)
p = inline('a - b','a','b');
else
p = inline('a + b','a','b');
end
c = p(1,2);
d = p(3,4);
But the inline functions I'm creating are becoming quite epic, so I'd like to change them to other types of functions (i.e. m-files, subfunctions, or nested functions).
Let's say I have m-files like Mercator.m, KavrayskiyVII.m, etc. (all taking a value for phi and lambda), and I'd like to assign the chosen function to p in the same way as I have above so that I can call it many times (with variable sized matrices and things that make using eval either impossible or a total mess).
I have a variable, type, that will be one of the names of the functions required (e.g. 'Mercator', 'KavrayskiyVII', etc.). I figure I need to make p into a pointer to the function named inside the type variable. Any ideas how I can do this?
Option #1:
Use the str2func function (assumes the string in type is the same as the name of the function):
p = str2func(type); % Create function handle using function name
c = p(phi, lambda); % Invoke function handle
NOTE: The documentation mentions these limitations:
Function handles created using str2func do not have access to variables outside of their local workspace or to nested functions. If your function handle contains these variables or functions, MATLAB® throws an error when you invoke the handle.
Option #2:
Use a SWITCH statement and function handles:
switch type
case 'Mercator'
p = #Mercator;
case 'KavrayskiyVII'
p = #KavrayskiyVII;
... % Add other cases as needed
end
c = p(phi, lambda); % Invoke function handle
Option #3:
Use EVAL and function handles (suggested by Andrew Janke):
p = eval(['#' type]); % Concatenate string name with '#' and evaluate
c = p(phi, lambda); % Invoke function handle
As Andrew points out, this avoids the limitations of str2func and the extra maintenance associated with a switch statement.

Resources