Determining Note Durations based on Onset Locations - audio

I have a question regarding how to determine the Duration of notes given their Onset Locations.
So for example, I have an array of amplitude values (containing short) and another array of the same size, that contains a 1 if a note onset is detected, and a 0 if not. So basically, the distance between each 1 will be used to determine the duration.
How can I do this? I know that I have to use the Sample Rate and other attributes of the audio data, but is there a particular formula that I can use?
Thank you!

So you are starting with a list of ONSETS, what you are really looking for is a list of OFFSETS.
There are many methods for onset detection (here is a paper on it) https://adamhess.github.io/Onset_Detection_Nov302011.pdf
many of the same methods can be applied to Offset Detection:
Since the onset is marked by an INCREASE in spectral content you can measure a decrease in Spectral content.
take a reasonable time window before and after your onset. (.25-.5s)
Chop up the window into smaller segments and take 50% overlapping Fourier transforms.
compute the difference between the fourier co-efficient between two successive windows decreases and only allow negative changes in SD.
multiple your results by -1.
pick the peaks off of the results
Voila, offsets.
(look at page 7 of the paper listed above for more detail about spectrial difference function, you can apply a modified (as above) version of it_

Well, if your samplerate in Hz is fs, then the time between two nodes is equal to
1/fs * <number of zeros between the two node-ones>
Very simple :-)
Regards

Related

Identify short signal peaks with rolling time frame in python

I am trying to identify all peaks from my sensor readings data. The smallest peak can be lesser than 10 amplitude and largest can be more than 400 amplitude. The rolling time window is not fixed as one peak can arrive in 6 hours vs second one in another 3 hours. I tried wavelet transform and python peak identification but that is only working for higher peaks. How do I resolve this? Here is signal image link, all peaks in Grey color I am identifying and in blue is my algorithm
Welcome to SO.
It is hard to provide you with a detailed answer without knowing your data's sampling rate and the duration of the peaks. From what I see in your example image they seem all over the place!
I don't think that wavelets will be of any use for your problem.
A recipe that I like to use to despike data is:
Smooth your input data using a median filter (a 11 points median filter generally does the trick for me): smoothed=scipy.signal.medfilt(data, window_len=11)
Compute a noise array by subtracting smoothed from data: noise=data-smoothed
Create a despiked_data array from data:
despiked_data=np.zeros_like(data)
np.copyto(despiked_data, data)
Then every time the noise exceeds a user defined threshold (mythreshold), replace the corresponding value in despiked_data with nan values: despiked_data[np.abs(noise)>mythreshold]=np.nan
You may later interpolate the output despiked_data array but if your intent is simply to identify the spikes, you don't even need to run this extra step.

Note Onset Detection using Spectral Difference

Im fairly new to onset detection. I read some papers about it and know that when working only with the time-domain, it is possible that there will be a large number of false-positives/negatives, and that it is generally advisable to work with either both the time-domain and frequency-domain or the frequency domain.
Regarding this, I am a bit confused because, I am having trouble on how the spectral energy or the results from the FFT bin can be used to determine note onsets. Because, aren't note onsets represented by sharp peaks in amplitude?
Can someone enlighten me on this? Thank you!
This is the easiest way to think about note onset:
think of a music signal as a flat constant signal. When and onset occurs you look at it as a large rapid CHANGE in signal (a positive or negative peak)
What this means in the frequency domain:
the FT of a constant signal is, well, CONSTANT! and flat
When the onset event occurs there is a rapid increase in spectrial content.
While you may think "Well you're actually talking about the peak of the onset right?" not at all. We are not actually interested in the peak of the onset, but rather the rising edge of the signal. When there is a sharp increase in the signal, the high frequency content increases.
one way to do this is using the spectrial difference function:
take your time domain signal and cut it up into overlaping strips (typically 50% overlap)
apply a hamming/hann window (this is to reduce spectrial smudging) (remember cutting up the signal into windows is like multiplying it by a pulse, in the frequency domain its like convolving the signal with a sinc function)
Apply the FFT algorithm on two sucessive windows
For each DFT bin, calculate the difference between the Xn and Xn-1 bins if it is negative set it to zero
square the results and sum all th bins together
repeat till end of signal.
look for peaks in signal using median thresholding and there are your onset times!
Source:
https://adamhess.github.io/Onset_Detection_Nov302011.pdf
and
http://www.elec.qmul.ac.uk/people/juan/Documents/Bello-TSAP-2005.pdf
You can look at sharp differences in amplitude at a specific frequency as suspected sound onsets. For instance if a flute switches from playing a G5 to playing a C, there will be a sharp drop in amplitude of the spectrum at around 784 Hz.
If you don't know what frequency to examine, the magnitude of an FFT vector will give you the amplitude of every frequency over some window in time (with a resolution dependent on the length of the time window). Pick your frequency, or a bunch of frequencies, and diff two FFTs of two different time windows. That might give you something that can be used as part of a likelihood estimate for a sound onset or change somewhere between the two time windows. Sliding the windows or successive approximation of their location in time might help narrow down the time of a suspected note onset or other significant change in the sound.
"Because, aren't note onsets represented by sharp peaks in amplitude?"
A: Not always. On percussive instruments (including piano) this is true, but for violin, flute, etc. notes often "slide" into each other as frequency changes without sharp amplitude increases.
If you stick to a single instrument like the piano onset detection is do-able. Generalized onset detection is a much more difficult problem. There are about a dozen primitive features that have been used for onset detection. Once you code them, you still have to decide how best to use them.

DSP - Filter sweep effect

I'm implementing a 'filter sweep' effect (I don't know if it's called like that). What I do is basically create a low-pass filter and make it 'move' along a certain frequency range.
To calculate the filter cut-off frequency at a given moment I use a user-provided linear function, which yields values between 0 and 1.
My first attempt was to directly map the values returned by the linear function to the range of frequencies, as in cf = freqRange * lf(x). Although it worked ok it looked as if the sweep ran much faster when moving through low frequencies and then slowed down during its way to the high frequency zone. I'm not sure why is this but I guess it's something to do with human hearing perceiving changes in frequency in a non-linear manner.
My next attempt was to move the filter's cut-off frequency in a logarithmic way. It works much better now but I still feel that the filter doesn't move at a constant perceived speed through the range of frequencies.
How should I divide the frequency space to obtain a constant perceived sweep speed?
Thanks in advance.
The frequency sweep effect you're referring to is likely a wah-wah filter, named for the ubiquitous wah-wah pedal.
We hear frequency in terms of octaves, and sweeping through octaves with a logarithmic scale is the way to linearize it. Not to sound dismissive, but it sounds like what you're doing is physically and mathematically correct. (You should spent as much time between 200 and 400 Hz as you do between 2000 and 4000 Hz, etc.) You just don't like how it sounds. And that's quite okay on both counts -- audio is highly subjective.
To mix things up a bit, one option would be to try the Bark scale, which is based on psychoacoustics and the structure of the ear. As I understand it, this is designed to spend equal amounts of time in each of your ear's internal "bandpass filters".
You could always try a quadratic or cubic function between 0 and 1. Audio potentiometers often use a few piecewise quadratic or cubic sections to get their mapping.
Winging it, but try this:
http://en.wikipedia.org/wiki/Physics_of_music#Scales "The following table shows the ratios between the frequencies of all the notes of the just major scale and the fixed frequency of the first note of the scale."
There is then a chart showing fractional values between 1 and 2, and if you tweak your timing to match, you may get what you wish. While the overall progression is still logarithmic, the stepping between each one should divide up into equal stepped 8ths (a bit jumpy).
Put another way, every half second adjust one note up. Each octave (I think) will cover twice the frequency range of the prior octave.
EDIT: Also, you'll find the frequencies here: http://en.wikipedia.org/wiki/Middle_C#Designation_by_octave (doesn't the programmer in you wish that C0 was exactly 16hz?)

How do you analyse the fundamental frequency of a PCM or WAV sample? [closed]

Closed. This question needs to be more focused. It is not currently accepting answers.
Want to improve this question? Update the question so it focuses on one problem only by editing this post.
Closed 4 years ago.
Improve this question
I have a sample held in a buffer from DirectX. It's a sample of a note played and captured from an instrument. How do I analyse the frequency of the sample (like a guitar tuner does)? I believe FFTs are involved, but I have no pointers to HOWTOs.
The FFT can help you figure out where the frequency is, but it can't tell you exactly what the frequency is. Each point in the FFT is a "bin" of frequencies, so if there's a peak in your FFT, all you know is that the frequency you want is somewhere within that bin, or range of frequencies.
If you want it really accurate, you need a long FFT with a high resolution and lots of bins (= lots of memory and lots of computation). You can also guess the true peak from a low-resolution FFT using quadratic interpolation on the log-scaled spectrum, which works surprisingly well.
If computational cost is most important, you can try to get the signal into a form in which you can count zero crossings, and then the more you count, the more accurate your measurement.
None of these will work if the fundamental is missing, though. :)
I've outlined a few different algorithms here, and the interpolated FFT is usually the most accurate (though this only works when the fundamental is the strongest harmonic - otherwise you need to be smarter about finding it), with zero-crossings a close second (though this only works for waveforms with one crossing per cycle). Neither of these conditions is typical.
Keep in mind that the partials above the fundamental frequency are not perfect harmonics in many instruments, like piano or guitar. Each partial is actually a little bit out of tune, or inharmonic. So the higher-frequency peaks in the FFT will not be exactly on the integer multiples of the fundamental, and the wave shape will change slightly from one cycle to the next, which throws off autocorrelation.
To get a really accurate frequency reading, I'd say to use the autocorrelation to guess the fundamental, then find the true peak using quadratic interpolation. (You can do the autocorrelation in the frequency domain to save CPU cycles.) There are a lot of gotchas, and the right method to use really depends on your application.
There are also other algorithms that are time-based, not frequency based.
Autocorrelation is a relatively simple algorithm for pitch detection.
Reference: http://cnx.org/content/m11714/latest/
I have written c# implementations of autocorrelation and other algorithms that are readable. Check out http://code.google.com/p/yaalp/.
http://code.google.com/p/yaalp/source/browse/#svn/trunk/csaudio/WaveAudio/WaveAudio
Lists the files, and PitchDetection.cs is the one you want.
(The project is GPL; so understand the terms if you use the code).
Guitar tuners don't use FFT's or DFT's. Usually they just count zero crossings. You might not get the fundamental frequency because some waveforms have more zero crossings than others but you can usually get a multiple of the fundamental frequency that way. That's enough to get the note although you might be one or more octaves off.
Low pass filtering before counting zero crossings can usually get rid of the excess zero crossings. Tuning the low pass filter requires some knowlegde of the range of frequency you want to detect though
FFTs (Fast-Fourier Transforms) would indeed be involved. FFTs allow you to approximate any analog signal with a sum of simple sine waves of fixed frequencies and varying amplitudes. What you'll essentially be doing is taking a sample and decomposing it into amplitude->frequency pairs, and then taking the frequency that corresponds to the highest amplitude.
Hopefully another SO reader can fill the gaps I'm leaving between the theory and the code!
A little more specifically:
If you start with the raw PCM in an input array, what you basically have is a graph of wave amplitude vs time.Doing a FFT will transform that to a frequency histogram for frequencies from 0 to 1/2 the input sampling rate. The value of each entry in the result array will be the 'strength' of the corresponding sub-frequency.
So to find the root frequency given an input array of size N sampled at S samples/second:
FFT(N, input, output);
max = max_i = 0;
for(i=0;i<N;i++)
if (output[i]>max) max_i = i;
root = S/2.0 * max_i/N ;
Retrieval of fundamental frequencies in a PCM audio signal is a difficult task, and there would be a lot to talk about it...
Anyway, usually time-based method are not suitable for polyphonic signals, because a complex wave given by the sum of different harmonic components due to multiple fundamental frequencies has a zero-crossing rate which depends only from the lowest frequency component...
Also in the frequency domain the FFT is not the most suitable method, since frequency spacing between notes follow an exponential scale, not linear. This means that a constant frequency resolution, used in the FFT method, may be insufficient to resolve lower frequency notes if the size of the analysis window in the time domain is not large enough.
A more suitable method would be a constant-Q transform, which is DFT applied after a process of low-pass filtering and decimation by 2 (i.e. halving each step the sampling frequency) of the signal, in order to obtain different subbands with different frequency resolution. In this way the calculation of DFT is optimized. The trouble is that also time resolution is variable, and increases for the lower subbands...
Finally, if we are trying to estimate the fundamental frequency of a single note, FFT/DFT methods are ok. Things change for a polyphonic context, in which partials of different sounds overlap and sum/cancel their amplitude depending from their phase difference, and so a single spectral peak could belong to different harmonic contents (belonging to different notes). Correlation in this case don't give good results...
Apply a DFT and then derive the fundamental frequency from the results. Googling around for DFT information will give you the information you need -- I'd link you to some, but they differ greatly in expectations of math knowledge.
Good luck.

Downsampling and applying a lowpass filter to digital audio

I've got a 44Khz audio stream from a CD, represented as an array of 16 bit PCM samples. I'd like to cut it down to an 11KHz stream. How do I do that? From my days of engineering class many years ago, I know that the stream won't be able to describe anything over 5500Hz accurately anymore, so I assume I want to cut everything above that out too. Any ideas? Thanks.
Update: There is some code on this page that converts from 48KHz to 8KHz using a simple algorithm and a coefficient array that looks like { 1, 4, 12, 12, 4, 1 }. I think that is what I need, but I need it for a factor of 4x rather than 6x. Any idea how those constants are calculated? Also, I end up converting the 16 byte samples to floats anyway, so I can do the downsampling with floats rather than shorts, if that helps the quality at all.
Read on FIR and IIR filters. These are the filters that use a coefficent array.
If you do a google search on "FIR or IIR filter designer" you will find lots of software and online-applets that does the hard job (getting the coefficients) for you.
EDIT:
This page here ( http://www-users.cs.york.ac.uk/~fisher/mkfilter/ ) lets you enter the parameters of your filter and will spit out ready to use C-Code...
You're right in that you need apply lowpass filtering on your signal. Any signal over 5500 Hz will be present in your downsampled signal but 'aliased' as another frequency so you'll have to remove those before downsampling.
It's a good idea to do the filtering with floats. There are fixed point filter algorithms too but those generally have quality tradeoffs to work. If you've got floats then use them!
Using DFT's for filtering is generally overkill and it makes things more complicated because dft's are not a contiuous process but work on buffers.
Digital filters generally come in two tastes. FIR and IIR. The're generally the same idea but IIF filters use feedback loops to achieve a steeper response with far less coefficients. This might be a good idea for downsampling because you need a very steep filter slope there.
Downsampling is sort of a special case. Because you're going to throw away 3 out of 4 samples there's no need to calculate them. There is a special class of filters for this called polyphase filters.
Try googling for polyphase IIR or polyphase FIR for more information.
Notice (in additions to the other comments) that the simple-easy-intuitive approach "downsample by a factor of 4 by replacing each group of 4 consecutive samples by the average value", is not optimal but is nevertheless not wrong, nor practically nor conceptually. Because the averaging amounts precisely to a low pass filter (a rectangular window, which corresponds to a sinc in frequency). What would be conceptually wrong is to just downsample by taking one of each 4 samples: that would definitely introduce aliasing.
By the way: practically any software that does some resampling (audio, image or whatever; example for the audio case: sox) takes this into account, and frequently lets you choose the underlying low-pass filter.
You need to apply a lowpass filter before you downsample the signal to avoid "aliasing". The cutoff frequency of the lowpass filter should be less than the nyquist frequency, which is half the sample frequency.
The "best" solution possible is indeed a DFT, discarding the top 3/4 of the frequencies, and performing an inverse DFT, with the domain restricted to the bottom 1/4th. Discarding the top 3/4ths is a low-pass filter in this case. Padding to a power of 2 number of samples will probably give you a speed benefit. Be aware of how your FFT package stores samples though. If it's a complex FFT (which is much easier to analyze, and generally has nicer properties), the frequencies will either go from -22 to 22, or 0 to 44. In the first case, you want the middle 1/4th. In the latter, the outermost 1/4th.
You can do an adequate job by averaging sample values together. The naïve way of grabbing samples four by four and doing an equal weighted average works, but isn't too great. Instead you'll want to use a "kernel" function that averages them together in a non-intuitive way.
Mathwise, discarding everything outside the low-frequency band is multiplication by a box function in frequency space. The (inverse) Fourier transform turns pointwise multiplication into a convolution of the (inverse) Fourier transforms of the functions, and vice-versa. So, if we want to work in the time domain, we need to perform a convolution with the (inverse) Fourier transform of box function. This turns out to be proportional to the "sinc" function (sin at)/at, where a is the width of the box in the frequency space. So at every 4th location (since you're downsampling by a factor of 4) you can add up the points near it, multiplied by sin (a dt) / a dt, where dt is the distance in time to that location. How nearby? Well, that depends on how good you want it to sound. It's common to ignore everything outside the first zero, for instance, or just take the number of points to be the ratio by which you're downsampling.
Finally there's the piss-poor (but fast) way of just discarding the majority of the samples, keeping just the zeroth, the fourth, and so on.
Honestly, if it fits in memory, I'd recommend just going the DFT route. If it doesn't use one of the software filter packages that others have recommended to construct the filter for you.
The process you're after called "Decimation".
There are 2 steps:
Applying Low Pass Filter on the data (In your case LPF with Cut Off at Pi / 4).
Downsampling (In you case taking 1 out of 4 samples).
There are many methods to design and apply the Low Pass Filter.
You may start here:
http://en.wikipedia.org/wiki/Filter_design
You could make use of libsamplerate to do the heavy lifting. Libsamplerate is a C API, and takes care of calculating the filter coefficients. You to select from different quality filters so that you can trade off quality for speed.
If you would prefer not to write any code, you could just use Audacity to do the sample rate conversion. It offers a powerful GUI, and makes use of libsamplerate for it's sample rate conversion.
I would try applying DFT, chopping 3/4 of the result and applying inverse DFT. I can't tell if it will sound good without actually trying tough.
I recently came across BruteFIR which may already do some of what you're interested in?
You have to apply low-pass filter (removing frequencies above 5500 Hz) and then apply decimation (leave every Nth sample, every 4th in your case).
For decimation, FIR, not IIR filters are usually employed, because they don't depend on previous outputs and therefore you don't have to calculate anything for discarded samples. IIRs, generally, depends on both inputs and outputs, so, unless a specific type of IIR is used, you'd have to calculate every output sample before discarding 3/4 of them.
Just googled an intro-level article on the subject: https://www.dspguru.com/dsp/faqs/multirate/decimation

Resources