Pseudo real time threading - multithreading

So I have built a small application that has a physics engine and a display. The display is attached to a controller which handles the physics engine(well, actually a view model that handles the controller, but details).
Currently the controller is a delegate that gets activated by a begin-invoke and deactivated by a cancellation token, and then reaped by an endinvoke. Inside the lambda brushes PropertyChanged(hooked into INotifyPropertyChanged) which keeps the UI up to date.
From what I understand the BeginInvoke method activates a task rather than another thread(which on my computers does activate another thread, but this isn't a guarantee from the reading I have done,it's up to the thread pool how it wants to get the task completed), which is fine from all the testing I have done. The lambda doesn't complete until a CancellationToken is killed. It has a sleep and an update(so it is sort of simulating a real-time physics engine...it's crude, but I don't need real precision on the real time, just enough to get a feel)
The question I have is, will this work on other computers, or should I switch over to explicit threads that I start and cancel? The scenario I am thinking of is on a 1 core processor, is it possible the second task will get massively less processor time and thereby make my acceptably inaccurate model into something unacceptably inaccurate(i.e. waiting for milliseconds before switching rather than microseconds?). Or is their some better way of doing this that I haven't come up with?

In my experience, using the threadpool in the way you described will pretty much guarantee reasonably optimal performance on most computers, without you having to go to the trouble to figure out how to divvy up the threads.
A thread is not the same thing as a core; you will still get multiple threads on a single-core machine, and those threads will each take part of the processing load. You won't get the "deadlock" condition you describe, unless you do something unusual with the threads, like give one of them real-time priority.
That said, microseconds is not a lot of time for context switching between threads, so YMMV. You'll have to try it, and see how well it works; there may be some tweaking required.

Related

How I profile multithreading problems?

This is the first time I am trying to profile a multi-threaded program.
I suspect the problem is it waiting for something, but I have no clue what, the program never reaches 100% of CPU, GPU, RAM or I/O use.
Until recently, I've only worked on projects with single-threading, or where the threads were very simple (example: usually an extra thread just to ensure the UI is not locked while the program works, or once I made a game engine with a separate thread to handle .XM and .IT files music, so that the main thread could do everything, while the other thread in another core could take care of decoding those files).
This program has several threads, and they don't do parallel work on the same tasks, each thread has its own completely separate purpose (for example one thread is dedicated to handling all sound-related API calls to the OS).
I downloaded Microsoft performance tools, there is a blog by an ex-Valve employee that explains that they work to do this, but although I even managed to make some profiles and whatnot, I don't really understood what I am seeing, it is only a bunch of pretty graphs to me (except the CPU use graph, that I already knew from doing sample-based profiling on single-threaded apps), so, how I find why the program is waiting on something? Or how I find what is it waiting for? How I find what thread is blocking the others?
I look at is as an alternation between two things:
a) measuring overall time, for which all you need is some kind of timer, and
b) finding speedups, which does not mean measuring, in spite of what a lot of people have been told.
Each time you find a speedup, you time the results and do it again.
That's the alternation.
To find speedups, the method I and many people use is random pausing.
The idea is, you get the program running under a debugger and manually interrupt it, several times.
Each time, you examine the state of every thread, including the call stack.
It is very crude, and it is very effective.
The reason this works is that the only way the program can go faster is if it is doing an activity that you can remove, and if that saves a certain fraction of time, you are at least that likely to see it on every pause.
This works whether it is doing I/O, waiting for something, or computing.
It sees things that profilers do not expose, because they make summaries from which speedups can easily hide.
Performance Wizard in Visual Studio Performance and Diagnostics Hub has "Resource contention data" profiling regime which allows to analyze concurrency contention among threads, i.e. how the overall performance of a program is impacted by threads waiting on other threads. Please refer to this blog post for more details.
PerfView is an extremely powerful profiling tool which allows one to analyze the impact of service threads and tasks to the overall performance of the program. Here is the PerfView Tutorial available.

Programming with threads, what is the benefit? [closed]

Closed. This question needs to be more focused. It is not currently accepting answers.
Want to improve this question? Update the question so it focuses on one problem only by editing this post.
Closed 9 years ago.
Improve this question
Given a single core CPU, what is the benefit to coding using threads?
At least with the Java implementation, and it seems intuitive to naturally extend to any other language considering the single core restriction, you may have several threads performing various actions but the processes are time-limited and switched.
Given process A and process B:
What is the benefit of performing half of process A, finish process B, and then finish the second half of process A VS performing process A then B?
It seems that the switching between the threads would introduce time delays that would prolong the overall completion time of both processes VS not switching and just completing A then B.
The reason to use threads on a single-core system is simply to allow processes that would otherwise use all the CPU to be preempted by other tasks that need to get done sooner. The most common reason to make a system multi-threaded is to have a responsive user interface even while performing long calculations.
Of course, any operation can take a long time (reading a file, accessing a database, resizing a photo, recalculating a spreadsheet), and those operations can be performed on a separate thread to allow the thread responding to user input to operate the whole time.
Twenty years ago, for example, it was rare to have a multi-CPU system or an OS that allowed multi-threading, so nearly every program was single-threaded and there were many frameworks created to allow systems to have UIs and still do I/O. The standard mechanism for this is an event loop, where all events (UI, network, timers, etc.) are processed in a big loop.
This type of system means that the UI is held up during things like file I/O and calculations. In order to not hold up the UI too much, you have to do the I/O in chunks (say, read the file 4k at a time), processing any incoming UI events between chunks. This is really just a hack to keep the system running, but it's hard to make the system run smoothly like this because you don't know how often you need to process events.
The solution is to have a separate thread to recalculate your spreadsheet or write your file. That way the OS can give those threads fair timeslices while still preempting them to run the UI, allowing the UI to always be responsive.
An executing thread is not necessarily doing anything useful. The canonical example is reading from disk -- that data isn't going to be there for another few milliseconds, during which time the processor would be sitting unused. Threads allow one piece of the program to use the CPU while other pieces of the program are waiting for operations to complete.
There are many reasons. Wikipedia gives a decent overview on its page about threads.
Here's a few OTOH:
I/O bound tasks benefit from threading (especially network applications).
Hyperthreaded processors may speed up multithreaded applications even on a single core.
Threads can be instructed to wait (block) and wake up on specific events, enabling responsive event-driven programming.
If your program has to do several things "at the same time" then threads are a good way to go, particularly is some of those tasks are quite long running. Otherwise you find yourself writing code that looks like an operating system scheduler inside your program, which is always a waste of time if the OS underneath you has a perfectly good one already. You'd find that your source code was mostly 'scheduler' and not much 'program', which is very inelegant. A good threaded program can be very elegant and economic in source code, which makes oneself look good and saves time.
Some run times get/got it wrong. In the early days of Ada the runtime environment would do its own thread scheduling, and it was never very satisfactory. That was partly due to the fact that whilst the Ada language spec included the concept of threads, the OSes we had back then quite often didn't provide them. Ada got a lot better when the compiler writers started using the underlying OS threads instead.
Similarly Python doesn't really properly use the underlying OS threads; it spoils it with the Global Interpreter Lock. Python has sidestepped the whole issue by going for multiprocessing instead (not necessarily a good thing on Windows hosts...).
Early versions of Windows didn't do threads either, they did cooperative multitasking. This depended on each process in the whole machine calling any OS routine at least now and then. Each OS routine would first consult the 'scheduler' to see if anything else was waiting to run before getting on with whatever it was supposed to be doing on behalf of the program. There were many terrible programs back then that wouldn't play ball and hogged the entire machine. You couldn't get on with playing a game of Solitaire when something else embarked on a length calculation.
What's the mental model of your program?
IF it depends on multiple external inputs that can happen in unpredictable orders, and if what you want to do in response to those inputs is not simple and can overlap in time ...
THEN it makes sense to devote a separate thread to each input request, and have that thread perform the response needed by that request.
So, for example, if your program is waiting for input requests from an external channel, and each request must trigger its own protocol of outgoing and incoming messages, it can very much simplify the code to create a new thread (or re-use an old one) for each request.
Somehow people seem to enter the workforce thinking that threads are only there for speed (through parallelism).
That's one use, provided it allows multiple CPU chips to get cranking,
but it is by no means the only use.

Can code running in a background thread be faster than in the main VCL thread in Delphi?

If anybody has had a lot of experience timing code running on the main VCL thread vs a background thread, I'd like to get an opinion. I have some code that does some heavy string processing running in my Delphi 6 application on the main thread. Each time I run an operation, the time for each operation hovers around 50 ms on a single thread on my i5 Quad core. What makes me really suspicious is that the same code running on an old Pentium 4 that I have, shows the same time for the operation when usually I see code running about 4 times slower on the Pentium 4 than the Quad Core. I am beginning to wonder if the code might be consuming significantly less time than 50 ms but that there's something about the main VCL thread, perhaps Windows message handling or executing Windows API calls, that is creating an artificial "floor" for the operation. Note, an operation is triggered by an incoming request on a socket if that matters, but the time measurement does not take place until the data is fully received.
Before I undertake the work of moving all the code on to a background thread for testing, I am wondering if anyone has any general knowledge in this area? What have your experiences been with code running on and off the main VCL thread? Note, the timing measurements are being done when there is absolutely no user triggered activity going on during the tests.
I'm also wondering if raising the priority of the thread to just below real-time would do any good. I've never seen much improvement in my run times when experimenting with those flags.
-- roschler
Given all threads have the same priority, as they normally do, there can't be a difference, for the following reasons. If you're seeing a difference, re-evaluate the code (make sure you run the same thing in both VCL and background threads) and make sure you time it properly:
The compiler generates the exact same code, it doesn't care if the code is going to run in the main thread or in a background thread. In fact you can put the whole code in a procedure and call that from both your worker thread's Execute() and from the main VCL thread.
For the CPU all cores, and all threads, are equal. Unless it's actually a Hyper Threading CPU, where not all cores are real, but then see the next bullet.
Even if not all CPU cores are equal, your thread will very unlikely run on the same core, the operating system is free to move it around at will (and does actually schedule your thread to run on different cores at different times).
Messaging overhead doesn't matter for the main VCL thread, because unless you're calling Application.ProcessMessages() manually, the message pump is simply stopped while your procedure does it's work. The message pump is passive, your thread needs to request messages from the queue, but since the thread is busy doing your work, it's not requesting any messages so no overhead there.
There's just one place where threads are not equal, and this can change the perceived speed of execution: It's the operating system that schedules threads to execution units (cores), and for the operating system threads have different priorities. You can tell the OS a certain thread needs to be treated differently using the SetThreadPriority() API (which is used by the TThread.Priority property).
Without simple source code to reproduce the issue, and how you are timing your threads, it will be difficult to understand what occurs in your software.
Sounds definitively like either:
An Architecture issue - how are your threads defined?
A measurement issue - how are you timing your threads?
A typical scaling issue of both the memory manager and the RTL string-related implementation.
About the latest point, consider this:
The current memory manager (FastMM4) is not scaling well on multi-core CPU; try with a per-thread memory manager, like our experimental SynScaleMM - note e.g. that the Free Pascal Compiler team has written a new scaling MM from scratch recently, to avoid such issue;
Try changing the string process implementation to avoid memory allocation (use static buffers), and string reference-counting (every string reference counting access produces a LOCK DEC/INC which do not scale so well on multi-code CPU - use per-thread char-level process, using e.g. PChar on static buffers instead of string).
I'm sure that without string operations, you'll find that all threads are equivalent.
In short: neither the current Delphi MM, neither the current string implementation scales well on multi-core CPU. You just found out a known issue of the current RTL. Read this SO question.
When your code has control of the VCL thread, for instance if it is in one method and doesn't call out to any VCL controls or call Application.ProcessMessages, then the run time will not be affected just because it's in the main VCL thread.
There is no overhead, since you "own" the whole processing power of the thread when you are in your own code.
I would suggest that you use a profiling tool to find where the actual bottleneck is.
Performance can't be assessed statically. For that you need to get AQTime, or some other performance profiler for Delphi. I use AQtime, and I love it, but I'm aware it's considered expensive.
Your code will not magically get faster just because you moved it to a background thread. If anything, your all-inclusive-time until you see results in your UI might get a little slower, if you have to send a lot of data from the background thread to the foreground thread via some synchronization mechanisms.
If however you could execute parts of your algorithm in parallel, that is, split your work so that you have 2 or more worker threads processing your data, and you have a quad core processor, then your total time to do a fixed load of work, could decrease. That doesn't mean the code would run any faster, but depending on a lot of factors, you might achieve a slight benefit from multithreading, up to the number of cores in your computer. It's never ever going to be a 2x performance boost, to use two threads instead of one, but you might get 20%-40% better performance, in your more-than-one-threaded parallel solutions, depending on how scalable your heap is under multithreaded loads, and how IO/memory/cache bound your workload is.
As for raising thread priorities, generally all you will do there is upset the delicate balance of your Windows system's performance. By raising the priorities you will achieve (sometimes) a nominal, but unrepeatable and non-guaranteeable increase in performance. Depending on the other things you do in your code, and your data sources, playing with priorities of threads can introduce subtle problems. See Dining Philosophers problem for more.
Your best bet for optimizing the speed of string operations is to first test it and find out exactly where it is using most of its time. Is it heap operations? Memory Copy and move operations? Without a profiler, even with advice from other people, you will still be comitting a cardinal sin of programming; premature optimization. Be results oriented. Be science based. Measure. Understand. Then decide.
Having said that, I've seen a lot of horrible code in my time, and there is one killer thing that people do that totally kills their threaded app performance; Using TThread.Synchronize too much.
Here's a pathological (Extreme) case, that sadly, occurs in the wild fairly frequently:
procedure TMyThread.Execute;
begin
while not Terminated do
Synchronize(DoWork);
end;
The problem here is that 100% of the work is really done in the foreground, other than the "if terminated" check, which executes in the thread context. To make the above code even worse, add a non-interruptible sleep.
For fast background thread code, use Synchronize sparingly or not at all, and make sure the code it calls is simple and executes quickly, or better yet, use TThread.Queue or PostMessage if you could really live with queueing main thread activity.
Are you asking if a background thread would be faster? If your background thread would run the same code as the main thread and there's nothing else going on in the main thread, you don't stand to gain anything with a background thread. Threads should be used to split and distribute processing loads that would otherwise contend with one another and/or block one another when running in the main thread. Since you seem to be dealing with a case where your main thread is otherwise idle, simply spawning a thread to run slow code will not help.
Threads aren't magic, they can't speed up slow code or eliminate processing bottlenecks in a particular segment not related to contention on the main thread. Make sure your code isn't doing something you don't know about and that your timing methodology is correct.
My first hunch would be that your interaction with the socket is affecting your timing in a way you haven't detected... (I know you said you're sure that's not involved - but maybe check again...)

Is firing off a Thread a valid answer to simplifying code?

As multi-processor and multi-core computers become more and more ubiquitous, is simply firing off a new thread a (relatively) simple and painless way of simplifying code? For instance, in a current personal project, I have a network server listening on a port. Since this is just a personal project, it's just a desktop app, with a GUI integrated into it for configuration. So, the app reads something like this:
Main()
Read configuration
Start listener thread
Run GUI
Listener Thread
While the app is running
Wait for a new connection
Run a client thread for the new connection
Client Thread
Write synchronously
Read synchronously
ad inifinitum, or till they disconnect
This approach means that while I have to worry about alot of locking, with the potential issues that involves, I avoid alot of spaghetti code from assynchronous calls, etc.
A slightly more insidious version of this came up today when I was working on the startup code. The startup was quick, but it was using lazy loading for alot of the configuration, which meant that while startup was quick, actually connecting to and using the service was difficult because of the lag while it loaded different sections (this was actually measurable in real time, up to 3-10 seconds sometimes). So I moved to a different strategy, on startup, loop through everything and force the lazy loading to kick in... but this made it start prohibitively slow; get up, go get a coffee slow. Final solution: throw the loop into a seperate thread with feedback in the system tray while it's still loading.
Is this "Meh, throw it in another thread, it'll be fine" attitude ok? At what point do you start getting diminishing returns and/or even reduced performance?
Multithreading does a lot of things, but I don't think "simplification" is ever one of them.
It's a great way to introduce bugs into code.
Using multiple threads properly is not easy. It should not be attempted by new developers.
In my opinion, multi-threaded programming is pretty high up on the difficulty (and complexity) scale, along with memory management. To me, the "Meh, throw it in another thread, it'll be fine" attitude is a bit too casual. Think long and hard you must, before forking threads you do.
No.
Plainly and simply, multithreading increases complexity and is a nearly trivial way to add bugs to code. There are concurrency issues such as synchronization, deadlock, race conditions, and priority inversion to name a few.
Secondly, the performance gains are not automatic. Recently, there was an excellent article in MSDN Magazine along these lines. The salient details are that a certain operation was taking 46 seconds per ten iterations coded as a single-threaded operation. The author parallelized the operation naively (one thread per four cores) and the operation dropped to 30 seconds per ten iterations. Sounds great until you take into consideration that the operation now eats 300% more processing power but only experienced a 34% gain in efficiency. It's not worth consuming all available processing power for a gain like that.
This gives you the extra job of debugging race conditions, and handling locks and sycronisation issues.
I would not use this unless there was a real need.
Read up on Amdahl's law, best summarized by "The speedup of a program using multiple processors in parallel computing is limited by the time needed for the sequential fraction of the program."
As it turns out, if only a small part of your app can run in parallel you won't get much gains, but potentially many hard-to-debug bugs.
I don't mean to be flip but what's in that configuration file that it takes so long to load? That's the origin of your problem, right?
Before spawning another thread to handle it, perhaps it can be parred down? Reduced, perhaps put in another data format that would be quicker, etc?
How often does it change? Is it something you can parse once at the beginning of the day and put the variables in shared memory so subsequent runs of your main program can just attach and get the needed values from there?
While I agree with everyone else here in saying that multithreading does not simplify code, it can be used to greatly simplify the user experience of your application.
Consider an application that has a lot of interactive widgets (I am currently developing one where this helps) - in the workflow of my application, a user can "build" the current project they are working on. This requires disabling the interactive widgets my application presents to the user and presenting a dialog with a indeterminate progress bar and a friendly "please wait" message.
The "build" occurs on a background thread; if it were to happen on the UI thread it would make the user experience less enjoyable - after all, it's no fun not being able to tell whether or not you are able to click on a widget in an application while a background task is running (cough, Visual Studio). Not to say that VS doesn't use background threads, I'm just saying their user experience could use some improvement. But I digress.
The one thing I take issue with in the title of your post is that you think of firing off threads when you need to perform tasks - I generally prefer to reuse threads - in .NET, I generally favor using the system thread pool over creating a new thread each time I want to do something, for the sake of performance.
I'm going to provide some balance against the unanimous "no".
DISCLAIMER: Yes, threads are complicated and can cause a whole bunch of problems. Everyone else has pointed this out.
From experience, a sequence of blocking reads/writes to a socket (which requires a separate thead) is much simpler than non-blocking ones. With blocking calls, you can tell the state of the connection just by looking at where you are in the function. With non-blocking calls, you need a bunch of variables to record the state of the connection, and check and modify them every time you interact with the connection. With blocking calls, you can just say "read the next X bytes" or "read until you find X" and it will actually do it (or fail). With non-blocking calls, you have to deal with fragmented data which usually requires keeping temporary buffers and filling them as necessary. You also end up checking if you've received enough data every time you receive little more. Plus you have to keep a list of open connections and handle unexpected closes for all of them.
It doesn't get much simpler than this:
void WorkerThreadMain(Connection connection) {
Request request = ReadRequest(connection);
if(!request) return;
Reply reply = ProcessRequest(request);
if(!connection.isOpen) return;
SendReply(reply, connection);
connection.close();
}
I'd like to note that this "listener spawns off a worker thread per connection" pattern is how web servers are designed, and I assume it's how a lot of request/response soft of server applications are designed.
So in conclusion, I have experienced the asynchronous socket spaghetti code you mentioned, and spawning off worker threads for every connection ended up being a good solution. Having said all this, throwing threads at a problem should usually be your last resort.
I think your have no choice but to deal with threads especially with networking and concurrent connections. Do threads make code simpler? I don't think so. But without them how would you program a server that can handle more than 1 client at the same time?

Threads or asynch?

How do you make your application multithreaded ?
Do you use asynch functions ?
or do you spawn a new thread ?
I think that asynch functions are already spawning a thread so if your job is doing just some file reading, being lazy and just spawning your job on a thread would just "waste" ressources...
So is there some kind of design when using thread or asynch functions ?
If you are talking about .Net, then don't forget the ThreadPool. The thread pool is also what asynch functions often use. Spawning to much threads can actually hurt your performance. A thread pool is designed to spawn just enough threads to do the work the fastest. So do use a thread pool instead of spwaning your own threads, unless the thread pool doesn't meet your needs.
PS: And keep an eye out on the Parallel Extensions from Microsoft
Spawning threads is only going to waste resources if you start spawning tons of them, one or two extra threads isn't going to effect the platforms proformance, infact System currently has over 70 threads for me, and msn is using 32 (I really have no idea how a messenger can use that many threads, exspecialy when its minimised and not really doing anything...)
Useualy a good time to spawn a thread is when something will take a long time, but you need to keep doing something else.
eg say a calculation will take 30 seconds. The best thing to do is spawn a new thread for the calculation, so that you can continue to update the screen, and handle any user input because users will hate it if your app freezes untill its finished doing the calculation.
On the other hand, creating threads to do something that can be done almost instantly is nearly pointless, since the overhead of creating (or even just passing work to an existing thread using a thread pool) will be higher than just doing the job in the first place.
Sometimes you can break your app into a couple of seprate parts which run in their own threads. For example in games the updates/physics etc may be one thread, while grahpics are another, sound/music is a third, and networking is another. The problem here is you really have to think about how these parts will interact or else you may have worse proformance, bugs that happen seemingly "randomly", or it may even deadlock.
I'll second Fire Lancer's answer - creating your own threads is an excellent way to process big tasks or to handle a task that would otherwise be "blocking" to the rest of synchronous app, but you have to have a clear understanding of the problem that you must solve and develope in a way that clearly defines the task of a thread, and limits the scope of what it does.
For an example I recently worked on - a Java console app runs periodically to capture data by essentially screen-scraping urls, parsing the document with DOM, extracting data and storing it in a database.
As a single threaded application, it, as you would expect, took an age, averaging around 1 url a second for a 50kb page. Not too bad, but when you scale out to needing to processes thousands of urls in a batch, it's no good.
Profiling the app showed that most of the time the active thread was idle - it was waiting for I/O operations - opening of a socket to the remote URL, opening a connection to the database etc. It's this sort of situation that can easily be improved with multithreading. Rewriting to be multi-threaded and with just 5 threads instead of one, even on a single core cpu, gave an increase in throughput of over 20 times.
In this example, each "worker" thread was explicitly limited to what it did - open the remote a remote url, parse the data, store it in the db. All the "high level" processing - generating the list of urls to parse, working out which next, handling errors, all remained with the control of the main thread.
The use of threads makes you think more about the way your application needs threading and can in the long run make it easier to improve / control your performance.
Async methods are faster to use but they are a bit magic - a lot of things happen to make them possible - so it's probable that at some point you will need something that they can't give you. Then you can try and roll some custom threading code.
It all depends on your needs.
The answer is "it depends".
It depends on what you're trying to achieve. I'm going to assume that you're aiming for more performance.
The simplest solution is to find another way to improve your performance. Run a profiler. Look for hot spots. Reduce unnecessary IO.
The next solution is to break your program into multiple processes, each of which can run in their own address space. This is easiest because there is no chance of the individual processes messing each other up.
The next solution is to use threads. At this point you're opening a major can of worms, so start small, and only multi-thread the critical path of the code.
The next solution is to use asynch IO. Generally only recommended for people writing some of very heavily loaded server, and even then I would rather re-use one of the existing frameworks that abstract away the details e.g. the C++ framework ICE, or an EJB server under java.
Note that each of these solutions has multiple sub-solutions - there are different breeds of threads and different kinds of asynch IO, each with slightly different performance characteristics, but again, it's generally best to let the framework handle it for you.

Resources