Uses of the modulus operator - programming-languages

What are some uses of the modulus operator? I know that it calculates the remainder in division so really I am asking what uses does the remainder have?
So far I have used it to check if a number was even and alternate colors on a table.

for(int i=0;i<10;i++)
{
if((i % 2) == 0 )
{
// I'm in an even row
}else{
// I'm in an odd row
}
}
The most basic use
Note: lang used Java

Getting an indication of progress in a long running loop by printing a message once every so many iterations.
List<Thing> bigList = readBigList();
for (int i = 0; i < bigList.size(); i++) {
processThing(bigList.get(i));
if (i % 10000 == 0) {
LOG.info("Processed " + i + " out of " + bigList.size() + " items");
}
}

Unit conversion, e.g. 13425 m is 13425 / 1000 km and 13425 % 1000 m = 13 km and 425 m
random number trimming, if you're using C/C++'s rand(), a common idiom is rand() % (HIGH - LOW) + LOW to generate a random number between HIGH and LOW
modular arithmetic: angles are limited to 360 degrees or 2*pi, you can normalize their range using modulus operator
even/odd check: if "n % 2" is true then n is even otherwise it's odd

Primes
Convert numbers from base x to base y

72 minutes modulo 60 = 12 minutes past the hour

Bitwise calculations, including conditional checking.

Chinese arithmetic (is that the preferred nomenclature, dude?)

The modulus operator is the single-most important operator in Clock Arithmetic.

It's generally used to check if one number is evenly divisible by another.
if(number % 2 == 0){
// the number is even
} else {
// the number is odd
}
or
if(number % 3 == 0){
// the number is evenly divisible by three
} else {
// the number is not evenly divisible by three
}
If the result of a mod operation is 0, the dividend (number) is evenly divisible by the divisor.
You can take advantage of this to do things like "piano-keys" style alternate-row shading on table data, or printing new column headings every X number of rows, or what have you.

A programming 101 exapmle would be to modulate row colors for data:
for(int i = 0; i < 100; i++)
{
write-color i % 2;
}
Determine if a number is evan or odd:
return number % 2;

Related

(DP) Memoization - How to know if it starts from the top or bottom?

It hasn't been long since I started studying algorithm coding tests, and I found it difficult to find regularity in Memoization.
Here are two problems.
Min Cost Climbing Stairs
You are given an integer array cost where cost[i] is the cost of ith step on a staircase. Once you pay the cost, you can either climb one or two steps.
You can either start from the step with index 0, or the step with index 1.
Return the minimum cost to reach the top of the floor.
Min Cost Climbing Stairs
Recurrence Relation Formula:
minimumCost(i) = min(cost[i - 1] + minimumCost(i - 1), cost[i - 2] + minimumCost(i - 2))
House Robber
You are a professional robber planning to rob houses along a street. Each house has a certain amount of money stashed, the only constraint stopping you from robbing each of them is that adjacent houses have security systems connected and it will automatically contact the police if two adjacent houses were broken into on the same night.
Given an integer array nums representing the amount of money of each house, return the maximum amount of money you can rob tonight without alerting the police.
House Robber
Recurrence Relation Formula:
robFrom(i) = max(robFrom(i + 1), robFrom(i + 2) + nums(i))
So as you can see, first problem consist of the previous, and second problem consist of the next.
Because of this, when I try to make recursion function, start numbers are different.
Start from n
int rec(int n, vector<int>& cost)
{
if(memo[n] == -1)
{
if(n <= 1)
{
memo[n] = 0;
} else
{
memo[n] = min(rec(n-1, cost) + cost[n-1], rec(n-2, cost) + cost[n-2]);
}
}
return memo[n];
}
int minCostClimbingStairs(vector<int>& cost) {
const int n = cost.size();
memo.assign(n+1,-1);
return rec(n, cost); // Start from n
}
Start from 0
int getrob(int n, vector<int>& nums)
{
if(how_much[n] == -1)
{
if(n >= nums.size())
{
return 0;
} else {
how_much[n] = max(getrob(n + 1, nums), getrob(n + 2, nums) + nums[n]);
}
}
return how_much[n];
}
int rob(vector<int>& nums) {
how_much.assign(nums.size() + 2, -1);
return getrob(0, nums); // Start from 0
}
How can I easily know which one need to be started from 0 or n? Is there some regularity?
Or should I just solve a lot of problems and increase my sense?
Your question is right, but somehow examples are not correct. Both the problems you shared can be done in both ways : 1. starting from top & 2. starting from bottom.
For example: Min Cost Climbing Stairs : solution that starts from 0.
int[] dp;
public int minCostClimbingStairs(int[] cost) {
int n = cost.length;
dp = new int[n];
for(int i=0; i<n; i++) {
dp[i] = -1;
}
rec(0, cost);
return Math.min(dp[0], dp[1]);
}
int rec(int in, int[] cost) {
if(in >= cost.length) {
return 0;
} else {
if(dp[in] == -1) {
dp[in] = cost[in] + Math.min(rec(in+1, cost), rec(in+2, cost));
}
return dp[in];
}
}
However, there are certain set of problems where this is not easy. Their structure is such that if you start in reverse, the computation could get complicated or mess up the future results:
Example: Reaching a target sum from numbers in an array using an index at max only 1 time. Reaching 10 in {3, 4, 6, 5, 2} : {4,6} is one answer but not {6, 2, 2} as you are using index (4) 2 times.
This can be done easily in top down way:
int m[M+10];
for(i=0; i<M+10; i++) m[i]=0;
m[0]=1;
for(i=0; i<n; i++)
for(j=M; j>=a[i]; j--)
m[j] |= m[j-a[i]];
If you try to implement in bottom up way, you will end up using a[i] multiple times. You can definitely do it bottom up way if you figure a out a way to tackle this messing up of states. Like using a queue to only store reached state in previous iterations and not use numbers reached in current iterations. Or even check if you keep a count in m[j] instead of just 1 and only use numbers where count is less than that of current iteration count. I think same thing should be valid for all DP.

How do I return the smallest value using a for loop?

I am given a limit, and I have to return the smallest value for n to make it true: 1+2+3+4+...+n >= limit. I feel like there's one thing missing, but I can't tell.
public int whenToReachLimit(int limit) {
int sum = 0;
for (int i = 1; sum < limit; i++) {
sum = sum + i;
}
return sum;
}
The output would be:
1 : 1
4 : 3
10 : 4
You get avoid the loop to compute the sum of the n first integers, using:
Thus the inequality becomes:
Notice that the left-hand side is positive (if n is negative, the sum is empty) and strictly increasing. Notice also that you are looking for the first integer satisfying the inequality. The idea here is first to replace the inequality by an equality which will allow us to solve the equation for n. In a second step, the possibly non-integer solution will be rounder to the closest integer.
Solving this equation for n should give you two solutions. The negative one can be discarded (remember n is positive). That is:
Finally, let's round this solution to the closest integer that will also satisfy the inequality:
NB: it can be overkilled for small inputs
I'm not sure if I know exactly what you want to do. But I would recommend to make a "practice run".
If Limit = 0 the function returns 0
If Limit = 1 the function returns 1
If Limit = 2 the function return 3
If Limit = 3 the function return 3
If Limit = 4 the function return 6
If Limit = 5 the function return 6
Now you decide by your own if the functions does what you're expecting.
I've found the answer. Turns out it doesn't work with a for loop which I find odd. But this is the answer to my own question.
public int whenToReachLimit(int limit) {
int n = 0;
int sum = 0;
while (sum < limit) {
sum += n;
n++;
}
return n-1;
}
You don't want to return sum, you want to return n (smallest possible value satisfying the given requirement).
return i-1 instead of sum.

Find the number of subsequences of a n-digit number, that are divisible by 8

Given n = 1 to 10^5, stored as a string in decimal format.
Example: If n = 968, then out of all subsequences i.e 9, 6, 8, 96, 68, 98, 968 there are 3 sub-sequences of it, i.e 968, 96 and 8, that are divisible by 8. So, the answer is 3.
Since the answer can be very large, print the answer modulo (10^9 + 7).
You can use dynamic programming. Let f(len, sum) be the number of subsequences of the prefix of length len such that their sum is sum modulo 8 (sum ranges from 0 to 7).
The value of f for len = 1 is obvious. The transitions go as follows:
We can start a new subsequence in the new position: f(len, a[i] % 8) += 1.
We can continue any subsequence from the shorter prefix:
for old_sum = 0..7
f(len, (old_sum * 10 + a[i]) % 8) += f(len - 1, old_sum) // take the new element
f(len, old_sum) += f(len - 1, old_sum) // ignore the new element
Of course, you can perform all computations module 10^9 + 7 and use a standard integer type.
The answer is f(n, 0) (all elements are taken into account and the sum modulo 8 is 0).
The time complexity of this solution is O(n) (as there are O(n) states and 2 transition from each of them).
Note: if the numbers can't have leading zeros, you can just one more parameter to the state: a flag that indicates whether the first element of the subsequence is zero (this sequences should never be extended). The rest of the solution stays the same.
Note: This answer assumes you mean contiguous subsequences.
The divisibility rule for a number to be divisible by 8 is if the last three digits of the number are divisible by 8. Using this, a simple O(n) algorithm can be obtained where n is the number of digits in the number.
Let N=a_0a_1...a_(n-1) be the decimal representation of N with n digits.
Let the number of sequences so far be s = 0
For each set of three digits, a_i a_(i+1) a_(i+2), check if the number is divisible by 8. If so, add i + 1 to the number of sequences, i.e., s = s + i. This is because all strings a_k..a_(i+2) will be divisible by 8 for k ranging from 0..i.
Loop i from 0 to n-2-1 and continue.
So, if you have 1424968, the subsequences divisible are at:
i=1 (424 yielding i+1 = 2 numbers: 424 and 1424)
i=3 (496 yielding i+1 = 4 numbers: 496, 2496, 42496, 142496)
i=4 (968 yielding i+1 = 5 numbers: 968, 4968, 24968, 424968, 1424968)
Note that some small modifications will be needed to consider numbers lesser than three digits in length.
Hence the total number of sequences = 2 + 4 + 5 = 11. Total complexity = O(n) where n is the number of digits.
One can use the fact that for any three-digit number abc the following holds:
abc % 8 = ((ab % 8) * 10 + c) % 8
Or in other words: the test for a number with a fixed start-index can be cascaded:
int div8(String s){
int total = 0, mod = 0;
for(int i = 0; i < s.length(); i++)
{
mod = (mod * 10 + s.charAt(i) - '0') % 8
if(mod == 0)
total++;
}
return total;
}
But we don't have fixed start-indices!
Well, that's pretty easy to fix:
Suppose two sequences a and b, such that int(a) % 8 = int(b) % 8 and b is a suffix of a. No matter what how the sequence continues, the modulos of a and b will always remain equal. Thus it's sufficient to keep track of the number of sequences that share the property of having an equal value modulo 8.
final int RESULTMOD = 1000000000 + 7;
int div8(String s){
int total = 0;
//modtable[i] is the number of subsequences with int(sequence) % 8 = i
int[] modTable = new int[8];
for(int i = 0; i < s.length(); i++){
int[] nextTable = new int[8];
//transform table from last loop-run (shared modulo)
for(int j = 0; j < 8; j++){
nextTable[(j * 10 + s.charAt(i) - '0') % 8] = modTable[j] % RESULTMOD;
}
//add the sequence that starts at this index to the appropriate bucket
nextTable[(s.charAt(i) - '0') % 8]++;
//add the count of all sequences with int(sequence) % 8 = 0 to the result
total += nextTable[0];
total %= RESULTMOD;
//table for next run
modTable = nextTable;
}
return total;
}
Runtime is O(n).
There are 10 possible states a subsequence can be in. The first is empty. The second is that there was a leading 0. And the other 8 are a ongoing number that is 0-7 mod 8. You start at the beginning of the string with 1 way of being empty, no way to be anything else. At the end of the string your answer is the number of ways to have a leading 0 plus an ongoing number that is 0 mod 8.
The transition table should be obvious. The rest is just normal dynamic programming.

Minimum no. of comparisons to find median of 3 numbers

I was implementing quicksort and I wished to set the pivot to be the median or three numbers. The three numbers being the first element, the middle element, and the last element.
Could I possibly find the median in less no. of comparisons?
median(int a[], int p, int r)
{
int m = (p+r)/2;
if(a[p] < a[m])
{
if(a[p] >= a[r])
return a[p];
else if(a[m] < a[r])
return a[m];
}
else
{
if(a[p] < a[r])
return a[p];
else if(a[m] >= a[r])
return a[m];
}
return a[r];
}
If the concern is only comparisons, then this should be used.
int getMedian(int a, int b , int c) {
int x = a-b;
int y = b-c;
int z = a-c;
if(x*y > 0) return b;
if(x*z > 0) return c;
return a;
}
int32_t FindMedian(const int n1, const int n2, const int n3) {
auto _min = min(n1, min(n2, n3));
auto _max = max(n1, max(n2, n3));
return (n1 + n2 + n3) - _min - _max;
}
You can't do it in one, and you're only using two or three, so I'd say you've got the minimum number of comparisons already.
Rather than just computing the median, you might as well put them in place. Then you can get away with just 3 comparisons all the time, and you've got your pivot closer to being in place.
T median(T a[], int low, int high)
{
int middle = ( low + high ) / 2;
if( a[ middle ].compareTo( a[ low ] ) < 0 )
swap( a, low, middle );
if( a[ high ].compareTo( a[ low ] ) < 0 )
swap( a, low, high );
if( a[ high ].compareTo( a[ middle ] ) < 0 )
swap( a, middle, high );
return a[middle];
}
I know that this is an old thread, but I had to solve exactly this problem on a microcontroller that has very little RAM and does not have a h/w multiplication unit (:)). In the end I found the following works well:
static char medianIndex[] = { 1, 1, 2, 0, 0, 2, 1, 1 };
signed short getMedian(const signed short num[])
{
return num[medianIndex[(num[0] > num[1]) << 2 | (num[1] > num[2]) << 1 | (num[0] > num[2])]];
}
If you're not afraid to get your hands a little dirty with compiler intrinsics you can do it with exactly 0 branches.
The same question was discussed before on:
Fastest way of finding the middle value of a triple?
Though, I have to add that in the context of naive implementation of quicksort, with a lot of elements, reducing the amount of branches when finding the median is not so important because the branch predictor will choke either way when you'll start tossing elements around the the pivot. More sophisticated implementations (which don't branch on the partition operation, and avoid WAW hazards) will benefit from this greatly.
remove max and min value from total sum
int med3(int a, int b, int c)
{
int tot_v = a + b + c ;
int max_v = max(a, max(b, c));
int min_v = min(a, min(b, c));
return tot_v - max_v - min_v
}
There is actually a clever way to isolate the median element from three using a careful analysis of the 6 possible permutations (of low, median, high). In python:
def med(a, start, mid, last):
# put the median of a[start], a[mid], a[last] in the a[start] position
SM = a[start] < a[mid]
SL = a[start] < a[last]
if SM != SL:
return
ML = a[mid] < a[last]
m = mid if SM == ML else last
a[start], a[m] = a[m], a[start]
Half the time you have two comparisons otherwise you have 3 (avg 2.5). And you only swap the median element once when needed (2/3 of the time).
Full python quicksort using this at:
https://github.com/mckoss/labs/blob/master/qs.py
You can write up all the permutations:
1 0 2
1 2 0
0 1 2
2 1 0
0 2 1
2 0 1
Then we want to find the position of the 1. We could do this with two comparisons, if our first comparison could split out a group of equal positions, such as the first two lines.
The issue seems to be that the first two lines are different on any comparison we have available: a<b, a<c, b<c. Hence we have to fully identify the permutation, which requires 3 comparisons in the worst case.
Using a Bitwise XOR operator, the median of three numbers can be found.
def median(a,b,c):
m = max(a,b,c)
n = min(a,b,c)
ans = m^n^a^b^c
return ans

Google Interview : Find Crazy Distance Between Strings

This Question was asked to me at the Google interview. I could do it O(n*n) ... Can I do it in better time.
A string can be formed only by 1 and 0.
Definition:
X & Y are strings formed by 0 or 1
D(X,Y) = Remove the things common at the start from both X & Y. Then add the remaining lengths from both the strings.
For e.g.
D(1111, 1000) = Only First alphabet is common. So the remaining string is 111 & 000. Therefore the result length("111") & length("000") = 3 + 3 = 6
D(101, 1100) = Only First two alphabets are common. So the remaining string is 01 & 100. Therefore the result length("01") & length("100") = 2 + 3 = 5
It is pretty that obvious that do find out such a crazy distance is going to be linear. O(m).
Now the question is
given n input, say like
1111
1000
101
1100
Find out the maximum crazy distance possible.
n is the number of input strings.
m is the max length of any input string.
The solution of O(n2 * m) is pretty simple. Can it be done in a better way?
Let's assume that m is fixed. Can we do this in better than O(n^2) ?
Put the strings into a tree, where 0 means go left and 1 means go right. So for example
1111
1000
101
1100
would result in a tree like
Root
1
0 1
0 1* 0 1
0* 0* 1*
where the * means that an element ends there. Constructing this tree clearly takes O(n m).
Now we have to find the diameter of the tree (the longest path between two nodes, which is the same thing as the "crazy distance"). The optimized algorithm presented there hits each node in the tree once. There are at most min(n m, 2^m) such nodes.
So if n m < 2^m, then the the algorithm is O(n m).
If n m > 2^m (and we necessarily have repeated inputs), then the algorithm is still O(n m) from the first step.
This also works for strings with a general alphabet; for an alphabet with k letters build a k-ary tree, in which case the runtime is still O(n m) by the same reasoning, though it takes k times as much memory.
I think this is possible in O(nm) time by creating a binary tree where each bit in a string encodes the path (0 left, 1 right). Then finding the maximum distance between nodes of the tree which can be done in O(n) time.
This is my solution, I think it works:
Create a binary tree from all strings. The tree will be constructed in this way:
at every round, select a string and add it to the tree. so for your example, the tree will be:
<root>
<1> <empty>
<1> <0>
<1> <0> <1> <0>
<1> <0> <0>
So each path from root to a leaf will represent a string.
Now the distance between each two leaves is the distance between two strings. To find the crazy distance, you must find the diameter of this graph, that you can do it easily by dfs or bfs.
The total complexity of this algorithm is:
O(n*m) + O(n*m) = O(n*m).
I think this problem is something like "find prefix for two strings", you can use trie(http://en.wikipedia.org/wiki/Trie) to accerlate searching
I have a google phone interview 3 days before, but maybe I failed...
Best luck to you
To get an answer in O(nm) just iterate across the characters of all string (this is an O(n) operation). We will compare at most m characters, so this will be done O(m). This gives a total of O(nm). Here's a C++ solution:
int max_distance(char** strings, int numstrings, int &distance) {
distance = 0;
// loop O(n) for initialization
for (int i=0; i<numstrings; i++)
distance += strlen(strings[i]);
int max_prefix = 0;
bool done = false;
// loop max O(m)
while (!done) {
int c = -1;
// loop O(n)
for (int i=0; i<numstrings; i++) {
if (strings[i][max_prefix] == 0) {
done = true; // it is enough to reach the end of one string to be done
break;
}
int new_element = strings[i][max_prefix] - '0';
if (-1 == c)
c = new_element;
else {
if (c != new_element) {
done = true; // mismatch
break;
}
}
}
if (!done) {
max_prefix++;
distance -= numstrings;
}
}
return max_prefix;
}
void test_misc() {
char* strings[] = {
"10100",
"10101110",
"101011",
"101"
};
std::cout << std::endl;
int distance = 0;
std::cout << "max_prefix = " << max_distance(strings, sizeof(strings)/sizeof(strings[0]), distance) << std::endl;
}
Not sure why use trees when iteration gives you the same big O computational complexity without the code complexity. anyway here is my version of it in javascript O(mn)
var len = process.argv.length -2; // in node first 2 arguments are node and program file
var input = process.argv.splice(2);
var current;
var currentCount = 0;
var currentCharLoc = 0;
var totalCount = 0;
var totalComplete = 0;
var same = true;
while ( totalComplete < len ) {
current = null;
currentCount = 0;
for ( var loc = 0 ; loc < len ; loc++) {
if ( input[loc].length === currentCharLoc) {
totalComplete++;
same = false;
} else if (input[loc].length > currentCharLoc) {
currentCount++;
if (same) {
if ( current === null ) {
current = input[loc][currentCharLoc];
} else {
if (current !== input[loc][currentCharLoc]) {
same = false;
}
}
}
}
}
if (!same) {
totalCount += currentCount;
}
currentCharLoc++;
}
console.log(totalCount);

Resources