Are there locks in Linux where the waiting queue is FIFO? This seems like such an obvious thing, and yet I just discovered that pthread mutexes aren't FIFO, and semaphores apparently aren't FIFO either (I'm working on kernel 2.4 (homework))...
Does Linux have a lock with FIFO waiting queue, or is there an easy way to make one with existing mechanisms?
Here is a way to create a simple queueing "ticket lock", built on pthreads primitives. It should give you some ideas:
#include <pthread.h>
typedef struct ticket_lock {
pthread_cond_t cond;
pthread_mutex_t mutex;
unsigned long queue_head, queue_tail;
} ticket_lock_t;
#define TICKET_LOCK_INITIALIZER { PTHREAD_COND_INITIALIZER, PTHREAD_MUTEX_INITIALIZER }
void ticket_lock(ticket_lock_t *ticket)
{
unsigned long queue_me;
pthread_mutex_lock(&ticket->mutex);
queue_me = ticket->queue_tail++;
while (queue_me != ticket->queue_head)
{
pthread_cond_wait(&ticket->cond, &ticket->mutex);
}
pthread_mutex_unlock(&ticket->mutex);
}
void ticket_unlock(ticket_lock_t *ticket)
{
pthread_mutex_lock(&ticket->mutex);
ticket->queue_head++;
pthread_cond_broadcast(&ticket->cond);
pthread_mutex_unlock(&ticket->mutex);
}
If you are asking what I think you are asking the short answer is no. Threads/processes are controlled by the OS scheduler. One random thread is going to get the lock, the others aren't. Well, potentially more than one if you are using a counting semaphore but that's probably not what you are asking.
You might want to look at pthread_setschedparam but it's not going to get you where I suspect you want to go.
You could probably write something but I suspect it will end up being inefficient and defeat using threads in the first place since you will just end up randomly yielding each thread until the one you want gets control.
Chances are good you are just thinking about the problem in the wrong way. You might want to describe your goal and get better suggestions.
I had a similar requirement recently, except dealing with multiple processes. Here's what I found:
If you need 100% correct FIFO ordering, go with caf's pthread ticket lock.
If you're happy with 99% and favor simplicity, a semaphore or a mutex can do really well actually.
Ticket lock can be made to work across processes:
You need to use shared memory, process-shared mutex and condition variable, handle processes dying with the mutex locked (-> robust mutex) ... Which is a bit overkill here, all I need is the different instances don't get scheduled at the same time and the order to be mostly fair.
Using a semaphore:
static sem_t *sem = NULL;
void fifo_init()
{
sem = sem_open("/server_fifo", O_CREAT, 0600, 1);
if (sem == SEM_FAILED) fail("sem_open");
}
void fifo_lock()
{
int r;
struct timespec ts;
if (clock_gettime(CLOCK_REALTIME, &ts) == -1) fail("clock_gettime");
ts.tv_sec += 5; /* 5s timeout */
while ((r = sem_timedwait(sem, &ts)) == -1 && errno == EINTR)
continue; /* Restart if interrupted */
if (r == 0) return;
if (errno == ETIMEDOUT) fprintf(stderr, "timeout ...\n");
else fail("sem_timedwait");
}
void fifo_unlock()
{
/* If we somehow end up with more than one token, don't increment the semaphore... */
int val;
if (sem_getvalue(sem, &val) == 0 && val <= 0)
if (sem_post(sem)) fail("sem_post");
usleep(1); /* Yield to other processes */
}
Ordering is almost 100% FIFO.
Note: This is with a 4.4 Linux kernel, 2.4 might be different.
Related
I found that there's a macro called PTHRED_MUTEX_ADAPTIVE_NP which is somehow given as a value to a mutex so that the mutex does an adaptive spinning, meaning that it spins in the magnitude of an immediate wakeup through the kernel would last. But how do I utilize this configuration-macro to a thread ?
And as I've developed an improved shared readers-writer lock (it needs only one atomic operation at best in contrast to the three operations given in the Wikipedia-solution) with relative writer-priority (further readers are stalled when there's a writer and the readers before are allowed to proceed) which could also make use of adaptive spinning: how is the number of spinning-cycles calculated ?
I found that there's a macro called PTHRED_MUTEX_ADAPTIVE_NP
Some pthreads implementations provide a macro PTHREAD_MUTEX_ADAPTIVE_NP (note spelling) that is one of the possible values of the kind_np mutex attribute, but neither that attribute nor the macro are standard. It looks like at least BSD and AIX have them, or at least did at one time, but this is not something you should be using in new code.
But how do I utilize this configuration-macro to a thread ?
You don't. Even if you are using a pthreads implementation that supports it, this is the value of a mutex attribute, not a thread attribute. You obtain a mutex with that attribute value by explicitly requesting it when you initialize the mutex. It would look something like this:
pthread_mutexattr_t attr;
pthread_mutex_t mutex;
int rval;
// Return-value checks omitted for brevity and clarity
rval = pthread_mutexattr_init(&attr);
rval = pthread_mutexattr_setkind_np(&attr, PTHREAD_MUTEX_ADAPTIVE_NP);
rval = pthread_mutex_init(&mutex, &attr);
There are other mutex attributes that you can set in analogous ways, which is one of the reasons I wrote this answer. Although you should not be using the kind_np attribute, you can follow this general model for other mutex attributes. There are also thread attributes, which work similarly.
I found the code in the glibc:
That's the "adaptive" mutex locking code of pthread_mutex_lock
in the glibc 2.31:
else if (__builtin_expect (PTHREAD_MUTEX_TYPE (mutex)
== PTHREAD_MUTEX_ADAPTIVE_NP, 1))
{
if (! __is_smp)
goto simple;
if (LLL_MUTEX_TRYLOCK (mutex) != 0)
{
int cnt = 0;
int max_cnt = MIN (max_adaptive_count (),
mutex->__data.__spins * 2 + 10);
do
{
if (cnt++ >= max_cnt)
{
LLL_MUTEX_LOCK (mutex);
break;
}
atomic_spin_nop ();
}
while (LLL_MUTEX_TRYLOCK (mutex) != 0);
mutex->__data.__spins += (cnt - mutex->__data.__spins) / 8;
}
assert (mutex->__data.__owner == 0);
}
So the spin count is doubled up to a maximum plus 10 first (system configurable or 1000 if thre's no configuration) and after the locking the difference between the actual spins and the predefined spins divided by 8 is added to the next spin-count.
Look at this sample code:
void OutputElement(int e, int delay)
{
this_thread::sleep_for(chrono::milliseconds(100 * delay));
cout << e << '\n';
}
void SleepSort(int v[], uint n)
{
for (uint i = 0 ; i < n ; ++i)
{
thread t(OutputElement, v[i], v[i]);
t.detach();
}
}
It starts n new threads and each one sleeps for some time before outputting a value and finishing. What's the correct/best/recommended way of waiting for all threads to finish in this case? I know how to work around this but I want to know what's the recommended multithreading tool/design that I should use in this situation (e.g. condition_variable, mutex etc...)?
And now for the slightly dissenting answer. And I do mean slightly because I mostly agree with the other answer and the comments that say "don't detach, instead join."
First imagine that there is no join(). And that you have to communicate among your threads with a mutex and condition_variable. This really isn't that hard nor complicated. And it allows an arbitrarily rich communication, which can be anything you want, as long as it is only communicated while the mutex is locked.
Now a very common idiom for such communication would simply be a state that says "I'm done". Child threads would set it, and the parent thread would wait on the condition_variable until the child said "I'm done." This idiom would in fact be so common as to deserve a convenience function that encapsulated the mutex, condition_variable and state.
join() is precisely this convenience function.
But imho one has to be careful. When one says: "Never detach, always join," that could be interpreted as: Never make your thread communication more complicated than "I'm done."
For a more complex interaction between parent thread and child thread, consider the case where a parent thread launches several child threads to go out and independently search for the solution to a problem. When the problem is first found by any thread, that gets communicated to the parent, and the parent can then take that solution, and tell all the other threads that they don't need to search any more.
For example:
#include <chrono>
#include <iostream>
#include <iterator>
#include <random>
#include <thread>
#include <vector>
void OneSearch(int id, std::shared_ptr<std::mutex> mut,
std::shared_ptr<std::condition_variable> cv,
int& state, int& solution)
{
std::random_device seed;
// std::mt19937_64 eng{seed()};
std::mt19937_64 eng{static_cast<unsigned>(id)};
std::uniform_int_distribution<> dist(0, 100000000);
int test = 0;
while (true)
{
for (int i = 0; i < 100000000; ++i)
{
++test;
if (dist(eng) == 999)
{
std::unique_lock<std::mutex> lk(*mut);
if (state == -1)
{
state = id;
solution = test;
cv->notify_one();
}
return;
}
}
std::unique_lock<std::mutex> lk(*mut);
if (state != -1)
return;
}
}
auto findSolution(int n)
{
std::vector<std::thread> threads;
auto mut = std::make_shared<std::mutex>();
auto cv = std::make_shared<std::condition_variable>();
int state = -1;
int solution = -1;
std::unique_lock<std::mutex> lk(*mut);
for (uint i = 0 ; i < n ; ++i)
threads.push_back(std::thread(OneSearch, i, mut, cv,
std::ref(state), std::ref(solution)));
while (state == -1)
cv->wait(lk);
lk.unlock();
for (auto& t : threads)
t.join();
return std::make_pair(state, solution);
}
int
main()
{
auto p = findSolution(5);
std::cout << '{' << p.first << ", " << p.second << "}\n";
}
Above I've created a "dummy problem" where a thread searches for how many times it needs to query a URNG until it comes up with the number 999. The parent thread puts 5 child threads to work on it. The child threads work for awhile, and then every once in a while, look up and see if any other thread has found the solution yet. If so, they quit, else they keep working. The main thread waits until solution is found, and then joins with all the child threads.
For me, using the bash time facility, this outputs:
$ time a.out
{3, 30235588}
real 0m4.884s
user 0m16.792s
sys 0m0.017s
But what if instead of joining with all the threads, it detached those threads that had not yet found a solution. This might look like:
for (unsigned i = 0; i < n; ++i)
{
if (i == state)
threads[i].join();
else
threads[i].detach();
}
(in place of the t.join() loop from above). For me this now runs in 1.8 seconds, instead of the 4.9 seconds above. I.e. the child threads are not checking with each other that often, and so main just detaches the working threads and lets the OS bring them down. This is safe for this example because the child threads own everything they are touching. Nothing gets destructed out from under them.
One final iteration can be realized by noticing that even the thread that finds the solution doesn't need to be joined with. All of the threads could be detached. The code is actually much simpler:
auto findSolution(int n)
{
auto mut = std::make_shared<std::mutex>();
auto cv = std::make_shared<std::condition_variable>();
int state = -1;
int solution = -1;
std::unique_lock<std::mutex> lk(*mut);
for (uint i = 0 ; i < n ; ++i)
std::thread(OneSearch, i, mut, cv,
std::ref(state), std::ref(solution)).detach();
while (state == -1)
cv->wait(lk);
return std::make_pair(state, solution);
}
And the performance remains at about 1.8 seconds.
There is still (sort of) an effective join with the solution-finding thread here. But it is accomplished with the condition_variable::wait instead of with join.
thread::join() is a convenience function for the very common idiom that your parent/child thread communication protocol is simply "I'm done." Prefer thread::join() in this common case as it is easier to read, and easier to write.
However don't unnecessarily constrain yourself to such a simple parent/child communication protocol. And don't be afraid to build your own richer protocol when the task at hand needs it. And in this case, thread::detach() will often make more sense. thread::detach() doesn't necessarily imply a fire-and-forget thread. It can simply mean that your communication protocol is more complex than "I'm done."
Don't detach, but instead join:
std::vector<std::thread> ts;
for (unsigned int i = 0; i != n; ++i)
ts.emplace_back(OutputElement, v[i], v[i]);
for (auto & t : threads)
t.join();
What's the best equivalent? I didn't find any reasonable solution for such a simple function. Choices I'm aware of:
1) MPEnterCriticalRegion - this is unfortunately extremely ineffective, probably because despite it's name it enters kernel mode, so for repeating locks it just takes way too much time...
2) OSSpinLockLock - unusable, because apparently not recursive. If it would be recursive, it would be the correct equivalent.
3) pthread_mutex_lock - didn't try, but I don't expect much, because it will probably be just emulated using the critical region or another system resource.
Assuming you have a correctly working non-recursive lock, it's rather easy to get an efficient recursive lock (no idea about Mac APIs, so this is pseudo code):
class RecursiveLock {
public:
void acquire() {
auto tid = get_thread_id();
if (owner == tid) {
lockCnt++;
} else {
AcquireLock(lock);
owner = tid;
lockCnt = 1;
}
}
void release() {
assert(owner == get_thread_id());
lockCnt--;
if (lockCnt == 0) {
owner = 0; // some illegal value for thread id
ReleaseLock(lock);
}
}
private:
int lockCnt;
std::atomic<void*> owner;
void *lock; // use whatever lock you like here
};
It's simple to reason:
if tid == owner it's guaranteed that we have already acquired the lock.
if tid != owner either someone else holds the lock or it's free, in both cases we try to acquire the lock and block until we get it. After we acquire the lock we set the owner to tid. So there's some time where we have acquired the lock but owner is still illegal. But no problem since the illegal tid won't compare equal to any real thread's tid either, so they'll go into the else branch as well and have to wait to get it.
Notice the std::atomic part - we do need ordering guarantees for the owner field to make this legal. If you don't have c++11 use some compiler intrinsic for that.
Experimenting with the ptrace() system call, I am trying to trace another thread of the same process. According to the man page, both the tracer and the tracee are specific threads (not processes), so I don't see a reason why it should not work. So far, I have tried the following:
use PTRACE_TRACEME from the clone()d child: the call succeeds, but does not do what I want, probably because the parent of the to-be-traced thread is not the thread that called clone()
use PTRACE_ATTACH or PTRACE_SEIZE from the parent thread: this always fails with EPERM, even if the process runs as root and with prctl(PR_SET_DUMPABLE, 1)
In all cases, waitpid(-1, &status, __WALL) fails with ECHILD (same when passing the child pid explicitly).
What should I do to make it work?
If it is not possible at all, is it by desing or a bug in the kernel (I am using version 3.8.0). In the former case, could you point me to the right bit of the documentation?
As #mic_e pointed out, this is a known fact about the kernel - not quite a bug, but not quite correct either. See the kernel mailing list thread about it. To provide an excerpt from Linus Torvalds:
That "new" (last November) check isn't likely going away. It solved
so many problems (both security and stability), and considering that
(a) in a year, only two people have ever even noticed
(b) there's a work-around as per above that isn't horribly invasive
I have to say that in order to actually go back to the old behaviour,
we'd have to have somebody who cares deeply, go back and check every
single special case, deadlock, and race.
The solution is to actually start the process that is being traced in a subprocess - you'll need to make the ptracing process be the parent of the other.
Here's an outline of doing this based on another answer that I wrote:
// this number is arbitrary - find a better one.
#define STACK_SIZE (1024 * 1024)
int main_thread(void *ptr) {
// do work for main thread
}
int main(int argc, char *argv[]) {
void *vstack = malloc(STACK_SIZE);
pid_t v;
if (clone(main_thread, vstack + STACK_SIZE, CLONE_PARENT_SETTID | CLONE_FILES | CLONE_FS | CLONE_IO, NULL, &v) == -1) { // you'll want to check these flags
perror("failed to spawn child task");
return 3;
}
long ptv = ptrace(PTRACE_SEIZE, v, NULL, NULL);
if (ptv == -1) {
perror("failed monitor sieze");
return 1;
}
// do actual ptrace work
}
So in my ilumination days, i started to think about how the hell do windows/linux implement the mutex, i've implemented this synchronizer in 100... different ways, in many diferent arquitectures but never think how it is really implemented in big ass OS, for example in the ARM world i made some of my synchronizers disabling the interrupts but i always though that it wasn't a really good way to do it.
I tried to "swim" throgh the linux kernel but just like a though i can't see nothing that satisfies my curiosity. I'm not an expert in threading, but i have solid all the basic and intermediate concepts of it.
So does anyone know how a mutex is implemented?
A quick look at code apparently from one Linux distribution seems to indicate that it is implemented using an interlocked compare and exchange. So, in some sense, the OS isn't really implementing it since the interlocked operation is probably handled at the hardware level.
Edit As Hans points out, the interlocked exchange does the compare and exchange in an atomic manner. Here is documentation for the Windows version. For fun, I just now wrote a small test to show a really simple example of creating a mutex like that. This is a simple acquire and release test.
#include <windows.h>
#include <assert.h>
#include <stdio.h>
struct homebrew {
LONG *mutex;
int *shared;
int mine;
};
#define NUM_THREADS 10
#define NUM_ACQUIRES 100000
DWORD WINAPI SomeThread( LPVOID lpParam )
{
struct homebrew *test = (struct homebrew*)lpParam;
while ( test->mine < NUM_ACQUIRES ) {
// Test and set the mutex. If it currently has value 0, then it
// is free. Setting 1 means it is owned. This interlocked function does
// the test and set as an atomic operation
if ( 0 == InterlockedCompareExchange( test->mutex, 1, 0 )) {
// this tread now owns the mutex. Increment the shared variable
// without an atomic increment (relying on mutex ownership to protect it)
(*test->shared)++;
test->mine++;
// Release the mutex (4 byte aligned assignment is atomic)
*test->mutex = 0;
}
}
return 0;
}
int main( int argc, char* argv[] )
{
LONG mymutex = 0; // zero means
int shared = 0;
HANDLE threads[NUM_THREADS];
struct homebrew test[NUM_THREADS];
int i;
// Initialize each thread's structure. All share the same mutex and a shared
// counter
for ( i = 0; i < NUM_THREADS; i++ ) {
test[i].mine = 0; test[i].shared = &shared; test[i].mutex = &mymutex;
}
// create the threads and then wait for all to finish
for ( i = 0; i < NUM_THREADS; i++ )
threads[i] = CreateThread(NULL, 0, SomeThread, &test[i], 0, NULL);
for ( i = 0; i < NUM_THREADS; i++ )
WaitForSingleObject( threads[i], INFINITE );
// Verify all increments occurred atomically
printf( "shared = %d (%s)\n", shared,
shared == NUM_THREADS * NUM_ACQUIRES ? "correct" : "wrong" );
for ( i = 0; i < NUM_THREADS; i++ ) {
if ( test[i].mine != NUM_ACQUIRES ) {
printf( "Thread %d cheated. Only %d acquires.\n", i, test[i].mine );
}
}
}
If I comment out the call to the InterlockedCompareExchange call and just let all threads run the increments in a free-for-all fashion, then the results do result in failures. Running it 10 times, for example, without the interlocked compare call:
shared = 748694 (wrong)
shared = 811522 (wrong)
shared = 796155 (wrong)
shared = 825947 (wrong)
shared = 1000000 (correct)
shared = 795036 (wrong)
shared = 801810 (wrong)
shared = 790812 (wrong)
shared = 724753 (wrong)
shared = 849444 (wrong)
The curious thing is that one time the results showed now incorrect contention. That might be because there is no "everyone start now" synchronization; maybe all threads started and finished in order in that case. But when I have the InterlockedExchangeCall in place, it runs without failure (or at least it ran 100 times without failure ... that doesn't prove I didn't write a subtle bug into the example).
Here is the discussion from the people who implemented it ... very interesting as it shows the tradeoffs ..
Several posts from Linus T ... of course
In earlier days pre-POSIX etc I used to implement synchronization by using a native mode word (e.g. 16 or 32 bit word) and the Test And Set instruction lurking on every serious processor. This instruction guarantees to test the value of a word and set it in one atomic instruction. This provides the basis for a spinlock and from that a hierarchy of synchronization functions could be built. The simplest is of course just a spinlock which performs a busy wait, not an option for more than transitory sync'ing, then a spinlock which drops the process time slice at each iteration for a lower system impact. Notional concepts like Semaphores, Mutexes, Monitors etc can be built by getting into the kernel scheduling code.
As I recall the prime usage was to implement message queues to permit multiple clients to access a database server. Another was a very early real time car race result and timing system on a quite primitive 16 bit machine and OS.
These days I use Pthreads and Semaphores and Windows Events/Mutexes (mutices?) etc and don't give a thought as to how they work, although I must admit that having been down in the engine room does give one and intuitive feel for better and more efficient multiprocessing.
In windows world.
The mutex before the windows vista mas implemented with a Compare Exchange to change the state of the mutex from Empty to BeingUsed, the other threads that entered the wait on the mutex the CAS will obvious fail and it must be added to the mutex queue for furder notification. Those operations (add/remove/check) of the queue would be protected by an common lock in windows kernel.
After Windows XP, the mutex started to use a spin lock for performance reasons being a self-suficiant object.
In unix world i didn't get much furder but probably is very similar to the windows 7.
Finally for kernels that work on a single processor the best way is to disable the interrupts when entering the critical section and re-enabling then when exiting.