Dynamic memory managment under Linux - linux

I know that under Windows, there are API functions like global_alloc() and such, which allocate memory, and return a handle, then this handle can be locked and a pointer returned, then unlocked again. When unlocked, the system can move this piece of memory around when it runs low on space, optimising memory usage.
My question is that is there something similar under Linux, and if not, how does Linux optimize its memory usage?

Those Windows functions come from a time when all programs were running in the same address space in real mode. Linux, and modern versions of Windows, run programs in separate address spaces, so they can move them about in RAM by remapping what physical address a particular virtual address resolves to in the page tables. No need to burden the programmer with such low level details.
Even on Windows, it's no longer necessary to use such functions except when interacting with a small number of old APIs. I believe Raymond Chen's blog and book have some discussions of the topic if you are interested in more detail. Eg here's part 4 of a series on the history of GlobalLock.

Not sure what Linux equivalent is but in ATT UNIX there are "scatter gather" memory management functions in the memory manager of the core OS. In a virtual memory operating environment there are no absolute addresses so applications don't have an equivalent function. The executable object loader (loads executable file into memory where it becomes a process) uses memory addressing from the memory manager that is all kept track of in virtual memory blocks maintained in its page table (which contains the physical memory addresses). Bottom line is your applications physical memory layout is likely in no way ever linear or accessible directly.

Related

Large physically contiguous memory area

For my M.Sc. thesis, I have to reverse-engineer the hash function Intel uses inside its CPUs to spread data among Last Level Cache slices in Sandy Bridge and newer generations. To this aim, I am developing an application in Linux, which needs a physically contiguous memory area in order to make my tests. The idea is to read data from this area, so that they are cached, probe if older data have been evicted (through delay measures or LLC miss counters) in order to find colliding memory addresses and finally discover the hash function by comparing these colliding addresses.
The same procedure has already been used in Windows by a researcher, and proved to work.
To do this, I need to allocate an area that must be large (64 MB or more) and fully cachable, so without DMA-friendly options in TLB. How can I perform this allocation?
To have a full control over the allocation (i.e., for it to be really physically contiguous), my idea was to write a Linux module, export a device and mmap() it from userspace, but I do not know how to allocate so much contiguous memory inside the kernel.
I heard about Linux Contiguous Memory Allocator (CMA), but I don't know how it works
Applications don't see physical memory, a process have some address space in virtual memory. Read about the MMU (what is contiguous in virtual space might not really be physically contiguous and vice versa)
You might perhaps want to lock some memory using mlock(2)
But your application will be scheduled, and other processes (or scheduled tasks) would dirty your CPU cache. See also sched_setaffinity(2)
(and even kernel code might be perhaps preempted)
This page on Kernel Newbies, has some ideas about memory allocation. But the max for get_free_pages looks like 8MiB. (Perhaps that's a compile-time constraint?)
Since this would be all-custom, you could explore the mem= boot parameter of the linux kernel. This will limit the amount of memory used, and you can party all over the remaining memory without anyone knowing. Heck, if you boot up a busybox system, you could probably do mem=32M, but even mem=256M should work if you're not booting a GUI.
You will also want to look into the Offline Scheduler (and here). It "unplugs" the CPU from Linux so you can have full control over ALL code running on it. (Some parts of this are already in the mainline kernel, and maybe all of it is.)

Kernel code responsible for virtual momory

I know 'even a single process can have a virtual address space larger than the system's physical memory' so Just want to know which kernel code is responsible to create virtual memory larger than physical memory?
Second thing is, Can i change the code to make it little large, Is there any performance benefit If i change the code to expand virtual memory?
All the memory management (and address space) management code is involved.
From the application point of view, you should understand more virtual memory (the kernel controls the MMU and handles page faults), notably the mmap(2), mprotect(2), madvise(2), execve(2) syscalls. Applications change their address space using these syscalls. You can use the proc(5) filesystem to query about it. For instance cat /proc/self/maps is showing the address space of the process executing that cat
Read also Advanced Linux Programming. Learn more about VDSO & ASLR.
Within the kernel, the relevant source code is mostly its mm/ subdirectory
(but nearly every filesystem has mmap specific code, and page faults are also related to scheduling, etc...)

Is it possible to allocate a certain sector of RAM under Linux?

I have recently gotten a faulty RAM and despite already finding out this I would like to try a much easier concept - write a program that would allocate faulty regions of RAM and never release them. It might not work well if they get allocated before the program runs, but it'd be much easier to reboot on failure than to build a kernel with patches.
So the question is:
How to write a program that would allocate given sectors (or pages containing given sectors)
and (if possible) report if it was successful.
This will problematic. To understand why, you have to understand the relation between physical and virtual memory.
On any modern Operating System, programs will get a very large address space for themselves, with the remainder of the address space being used for the OS itself. Other programs are simply invisible: there's no address at which they're found. How is this possible? Simple: processes use virtual addresses. A virtual address does not correspond directly to physical RAM. Instead, there's an address translation table, managed by the OS. When your process runs, the table only contains mappings for RAM that's allocated to you.
Now, that implies that the OS decides what physical RAM is allocated to your program. It can (and will) change that at runtimke. For instance, swapping is implemented using the same mechanism. When swapping out, a page of RAM is written to disk, and its mapping deleted from the translation table. When you try to use the virtual address, the OS detects the missing mapping, restores the page from disk to RAM, and puts back a mapping. It's unlikely that you get back the same page of physical RAM, but the virtual address doesn't change during the whole swap-out/swap-in. So, even if you happened to allocate a page of bad memory, you couldn't keep it. Programs don't own RAM, they own a virtual address space.
Now, Linux does offer some specific kernel functions that allocate memory in a slightly different way, but it seems that you want to bypass the kernel entirely. You can find a much more detailed description in http://lwn.net/images/pdf/LDD3/ch08.pdf
Check out BadRAM: it seems to do exactly what you want.
Well, it's not an answer on how to write a program, but it fixes the issue whitout compiling a kernel:
Use memmap or mem parameters:
http://gquigs.blogspot.com/2009/01/bad-memory-howto.html
I will edit this answer when I get it running and give details.
The thing is write own kernel module, which can allocate physical address. And make it noswap with mlock(2).
I've never tried it. No warranty.

Accessing any memory locations under Linux 2.6.x

I'm using Slackware 12.2 on an x86 machine. I'm trying to debug/figure out things by dumping specific parts of memory. Unfortunately my knowledge on the Linux kernel is quite limited to what I need for programming/pentesting.
So here's my question: Is there a way to access any point in memory? I tried doing this with a char pointer so that It would only be a byte long. However the program crashed and spat out something in that nature of: "can't access memory location". Now I was pointing at the 0x00000000 location which where the system stores it's interrupt vectors (unless that changed), which shouldn't matter really.
Now my understanding is the kernel will allocate memory (data, stack, heap, etc) to a program and that program will not be able to go anywhere else. So I was thinking of using NASM to tell the CPU to go directly fetch what I need but I'm unsure if that would work (and I would need to figure out how to translate MASM to NASM).
Alright, well there's my long winded monologue. Essentially my question is: "Is there a way to achieve this?".
Anyway...
If your program is running in user-mode, then memory outside of your process memory won't be accessible, by hook or by crook. Using asm will not help, nor will any other method. This is simply impossible, and is a core security/stability feature of any OS that runs in protected mode (i.e. all of them, for the past 20+ years). Here's a brief overview of Linux kernel memory management.
The only way you can explore the entire memory space of your computer is by using a kernel debugger, which will allow you to access any physical address. However, even that won't let you look at the memory of every process at the same time, since some processes will have been swapped out of main memory. Furthermore, even in kernel mode, physical addresses are not necessarily the same as the addresses visible to the process.
Take a look at /dev/mem or /dev/kmem (man mem)
If you have root access you should be able to see your memory there. This is a mechanism used by kernel debuggers.
Note the warning: Examining and patching is likely to lead to unexpected results when read-only or write-only bits are present.
From the man page:
mem is a character device file that is an image of
the main memory of the computer. It may be used, for
example, to examine (and even patch) the system.
Byte addresses in mem are interpreted as physical
memory addresses. References to nonexistent locations
cause errors to be returned.
...
The file kmem is the same as mem, except that the
kernel virtual memory rather than physical memory is
accessed.

single common address space for all tasks

How to give single common address space for all tasks. IF its happening like this can we avoid virtual to physical memory mapping.
I f all task sharing common address space then how can we avoid virtual to physical memory mapping.
There are a few modern (research) OS's that do this, like Singularity and there are performance benefits, primarily because it no longer needs to do context changes and the file/symbol loader no longer needs to do address translation for global caches and kernel functions.
You do need to be a bit more specific about what you're looking for, tho'. You tagged your post as OSX and Linux, both of which require virtual memory. When running on systems without a MMU (and thus no virtual memory) it emulates it, which I'm fairly certain you can't circumvent. I'm not an expert by any means.
uClinux is an implementation of Linux that runs on processors that lack an MMU (such as ARM7), so by definition must have a single address space for all tasks.
So one answer to "how" is "use uClinux".
You tagged this VxWorks, and there is another answer; VxWorks supports a flat memory. In fact when I last used it the MMU protection was an (expensive) add on. Many other RTOS designed for micro controllers similarly do not support an MMU, such as eCOS, and FreeRTOS.
Of RTOS's that do support an MMU, QNX is probably amongst the most robust and mature, while still maintaining high performance.
I'm not sure why you would want to disable virtual memory mapping - it's a built in function of the cpu, and pretty much essential when running an OS to properly isolate processes from each other.
Most operating systems allow you to disable virtual memory, so that your memory capacity is limited by physical memory. However, A processes address space is still virtual, and virtual to physical mapping is still happening.
A way to get what you want is to run an operating system that executes in Real Mode, such as DOS or Windows 3.0, or write your own.
The advantages of virtual memory far outweigh the disadvantages. Why do you want to avoid virtual memory.
This is how some older operating systems and even how some modern operating systems that lack VM still work. It has many disadvantages for things like desktop and server applications but it can be useful in an embedded and/or real-time context, or where you have minimal hardware.
The VxWorks AE(Advanced Edition supports) deviates from the concept of Common address space for all tasks.So it can effectively be used in both systems with MMU and without MMU .The common address space for all tasks is called flat memory model and the separate address space for different tasks is called over lapped memory model or segmented memory model.You should not confuse the memory model with the memory lay out as seen in object files which divides data in to Code Segment ,Data Segment ,BSS etc .Both are entirely different things :).
This link in stack overflow will help better
Difference between flat memory model and protected memory model?

Resources