Limiting the time a program runs in Linux - linux

In Linux I would like to run a program but only for a limited time, like 1 second. If the program exceeds this running time I would like to kill the process and show an error message.

Ah well. timeout(1).
DESCRIPTION
Start COMMAND, and kill it if still running after DURATION.

StackOverflow won't allow me to delete my answer since it's the accepted one. It's garnering down-votes since it's at the top of the list with a better solution below it. If you're on a GNU system, please use timeout instead as suggested by #wRAR. So in the hopes that you'll stop down-voting, here's how it works:
timeout 1s ./myProgram
You can use s, m, h or d for seconds (the default if omitted), minutes, hours or days. A nifty feature here is that you may specify another option -k 30s (before the 1s above) in order to kill it with a SIGKILL after another 30 seconds, should it not respond to the original SIGTERM.
A very useful tool. Now scroll down and up-vote #wRAR's answer.
For posterity, this was my original - inferior - suggestion, it might still be if some use for someone.
A simple bash-script should be able to do that for you
./myProgram &
sleep 1
kill $! 2>/dev/null && echo "myProgram didn't finish"
That ought to do it.
$! expands to the last backgrounded process (through the use of &), and kill returns false if it didn't kill any process, so the echo is only executed if it actually killed something.
2>/dev/null redirects kill's stderr, otherwise it would print something telling you it was unable to kill the process.
You might want to add a -KILL or whichever signal you want to use to get rid of your process too.
EDIT
As ephemient pointed out, there's a race here if your program finishes and the some other process snatches the pid, it'll get killed instead. To reduce the probability of it happening, you could react to the SIGCHLD and not try to kill it if that happens. There's still chance to kill the wrong process, but it's very remote.
trapped=""
trap 'trapped=yes' SIGCHLD
./myProgram &
sleep 1
[ -z "$trapped" ] && kill $! 2>/dev/null && echo '...'

Maybe CPU time limit (ulimit -t/setrlimit(RLIMIT_CPU)) will help?

you could launch it in a shell script using &
your_program &
pid=$!
sleep 1
if [ `pgrep $pid` ]
then
kill $pid
echo "killed $pid because it took too long."
fi
hope you get the idea, I'm not sure this is correct my shell skills need some refresh :)

tail -f file & pid=$!
sleep 10
kill $pid 2>/dev/null && echo '...'

If you have the sources, you can fork() early in main() and then have the parent process measure the time and possibly kill the child process. Just use standard system calls fork(), waitpid(), kill(), ... maybe some standard Unix signal handling. Not too complicated but takes some effort.
You can also script something on the shell although I doubt it will be as accurate with respect to the time of 1 second.
If you just want to measure the time, type time <cmd ...> on the shell.

Ok, so just write a short C program that forks, calls execlp or something similar in the child, measures the time in the parent and kills the child. Should be easy ...

Related

nohup node service using cron job on CentOS 7 [duplicate]

I have a python script that'll be checking a queue and performing an action on each item:
# checkqueue.py
while True:
check_queue()
do_something()
How do I write a bash script that will check if it's running, and if not, start it. Roughly the following pseudo code (or maybe it should do something like ps | grep?):
# keepalivescript.sh
if processidfile exists:
if processid is running:
exit, all ok
run checkqueue.py
write processid to processidfile
I'll call that from a crontab:
# crontab
*/5 * * * * /path/to/keepalivescript.sh
Avoid PID-files, crons, or anything else that tries to evaluate processes that aren't their children.
There is a very good reason why in UNIX, you can ONLY wait on your children. Any method (ps parsing, pgrep, storing a PID, ...) that tries to work around that is flawed and has gaping holes in it. Just say no.
Instead you need the process that monitors your process to be the process' parent. What does this mean? It means only the process that starts your process can reliably wait for it to end. In bash, this is absolutely trivial.
until myserver; do
echo "Server 'myserver' crashed with exit code $?. Respawning.." >&2
sleep 1
done
The above piece of bash code runs myserver in an until loop. The first line starts myserver and waits for it to end. When it ends, until checks its exit status. If the exit status is 0, it means it ended gracefully (which means you asked it to shut down somehow, and it did so successfully). In that case we don't want to restart it (we just asked it to shut down!). If the exit status is not 0, until will run the loop body, which emits an error message on STDERR and restarts the loop (back to line 1) after 1 second.
Why do we wait a second? Because if something's wrong with the startup sequence of myserver and it crashes immediately, you'll have a very intensive loop of constant restarting and crashing on your hands. The sleep 1 takes away the strain from that.
Now all you need to do is start this bash script (asynchronously, probably), and it will monitor myserver and restart it as necessary. If you want to start the monitor on boot (making the server "survive" reboots), you can schedule it in your user's cron(1) with an #reboot rule. Open your cron rules with crontab:
crontab -e
Then add a rule to start your monitor script:
#reboot /usr/local/bin/myservermonitor
Alternatively; look at inittab(5) and /etc/inittab. You can add a line in there to have myserver start at a certain init level and be respawned automatically.
Edit.
Let me add some information on why not to use PID files. While they are very popular; they are also very flawed and there's no reason why you wouldn't just do it the correct way.
Consider this:
PID recycling (killing the wrong process):
/etc/init.d/foo start: start foo, write foo's PID to /var/run/foo.pid
A while later: foo dies somehow.
A while later: any random process that starts (call it bar) takes a random PID, imagine it taking foo's old PID.
You notice foo's gone: /etc/init.d/foo/restart reads /var/run/foo.pid, checks to see if it's still alive, finds bar, thinks it's foo, kills it, starts a new foo.
PID files go stale. You need over-complicated (or should I say, non-trivial) logic to check whether the PID file is stale, and any such logic is again vulnerable to 1..
What if you don't even have write access or are in a read-only environment?
It's pointless overcomplication; see how simple my example above is. No need to complicate that, at all.
See also: Are PID-files still flawed when doing it 'right'?
By the way; even worse than PID files is parsing ps! Don't ever do this.
ps is very unportable. While you find it on almost every UNIX system; its arguments vary greatly if you want non-standard output. And standard output is ONLY for human consumption, not for scripted parsing!
Parsing ps leads to a LOT of false positives. Take the ps aux | grep PID example, and now imagine someone starting a process with a number somewhere as argument that happens to be the same as the PID you stared your daemon with! Imagine two people starting an X session and you grepping for X to kill yours. It's just all kinds of bad.
If you don't want to manage the process yourself; there are some perfectly good systems out there that will act as monitor for your processes. Look into runit, for example.
Have a look at monit (http://mmonit.com/monit/). It handles start, stop and restart of your script and can do health checks plus restarts if necessary.
Or do a simple script:
while true
do
/your/script
sleep 1
done
In-line:
while true; do <your-bash-snippet> && break; done
This will restart continuously <your-bash-snippet> if it fails: && break will stop the loop if <your-bash-snippet> stop gracefully (return code 0).
To restart <your-bash-snippet> in all cases:
while true; do <your-bash-snippet>; done
e.g. #1
while true; do openconnect x.x.x.x:xxxx && break; done
e.g. #2
while true; do docker logs -f container-name; sleep 2; done
The easiest way to do it is using flock on file. In Python script you'd do
lf = open('/tmp/script.lock','w')
if(fcntl.flock(lf, fcntl.LOCK_EX|fcntl.LOCK_NB) != 0):
sys.exit('other instance already running')
lf.write('%d\n'%os.getpid())
lf.flush()
In shell you can actually test if it's running:
if [ `flock -xn /tmp/script.lock -c 'echo 1'` ]; then
echo 'it's not running'
restart.
else
echo -n 'it's already running with PID '
cat /tmp/script.lock
fi
But of course you don't have to test, because if it's already running and you restart it, it'll exit with 'other instance already running'
When process dies, all it's file descriptors are closed and all locks are automatically removed.
You should use monit, a standard unix tool that can monitor different things on the system and react accordingly.
From the docs: http://mmonit.com/monit/documentation/monit.html#pid_testing
check process checkqueue.py with pidfile /var/run/checkqueue.pid
if changed pid then exec "checkqueue_restart.sh"
You can also configure monit to email you when it does do a restart.
if ! test -f $PIDFILE || ! psgrep `cat $PIDFILE`; then
restart_process
# Write PIDFILE
echo $! >$PIDFILE
fi
watch "yourcommand"
It will restart the process if/when it stops (after a 2s delay).
watch -n 0.1 "yourcommand"
To restart it after 0.1s instead of the default 2 seconds
watch -e "yourcommand"
To stop restarts if the program exits with an error.
Advantages:
built-in command
one line
easy to use and remember.
Drawbacks:
Only display the result of the command on the screen once it's finished
I'm not sure how portable it is across operating systems, but you might check if your system contains the 'run-one' command, i.e. "man run-one".
Specifically, this set of commands includes 'run-one-constantly', which seems to be exactly what is needed.
From man page:
run-one-constantly COMMAND [ARGS]
Note: obviously this could be called from within your script, but also it removes the need for having a script at all.
I've used the following script with great success on numerous servers:
pid=`jps -v | grep $INSTALLATION | awk '{print $1}'`
echo $INSTALLATION found at PID $pid
while [ -e /proc/$pid ]; do sleep 0.1; done
notes:
It's looking for a java process, so I
can use jps, this is much more
consistent across distributions than
ps
$INSTALLATION contains enough of the process path that's it's totally unambiguous
Use sleep while waiting for the process to die, avoid hogging resources :)
This script is actually used to shut down a running instance of tomcat, which I want to shut down (and wait for) at the command line, so launching it as a child process simply isn't an option for me.
I use this for my npm Process
#!/bin/bash
for (( ; ; ))
do
date +"%T"
echo Start Process
cd /toFolder
sudo process
date +"%T"
echo Crash
sleep 1
done

BASH - why the infinite loop is not infinite and failing to restart the crashed process? [duplicate]

I have a python script that'll be checking a queue and performing an action on each item:
# checkqueue.py
while True:
check_queue()
do_something()
How do I write a bash script that will check if it's running, and if not, start it. Roughly the following pseudo code (or maybe it should do something like ps | grep?):
# keepalivescript.sh
if processidfile exists:
if processid is running:
exit, all ok
run checkqueue.py
write processid to processidfile
I'll call that from a crontab:
# crontab
*/5 * * * * /path/to/keepalivescript.sh
Avoid PID-files, crons, or anything else that tries to evaluate processes that aren't their children.
There is a very good reason why in UNIX, you can ONLY wait on your children. Any method (ps parsing, pgrep, storing a PID, ...) that tries to work around that is flawed and has gaping holes in it. Just say no.
Instead you need the process that monitors your process to be the process' parent. What does this mean? It means only the process that starts your process can reliably wait for it to end. In bash, this is absolutely trivial.
until myserver; do
echo "Server 'myserver' crashed with exit code $?. Respawning.." >&2
sleep 1
done
The above piece of bash code runs myserver in an until loop. The first line starts myserver and waits for it to end. When it ends, until checks its exit status. If the exit status is 0, it means it ended gracefully (which means you asked it to shut down somehow, and it did so successfully). In that case we don't want to restart it (we just asked it to shut down!). If the exit status is not 0, until will run the loop body, which emits an error message on STDERR and restarts the loop (back to line 1) after 1 second.
Why do we wait a second? Because if something's wrong with the startup sequence of myserver and it crashes immediately, you'll have a very intensive loop of constant restarting and crashing on your hands. The sleep 1 takes away the strain from that.
Now all you need to do is start this bash script (asynchronously, probably), and it will monitor myserver and restart it as necessary. If you want to start the monitor on boot (making the server "survive" reboots), you can schedule it in your user's cron(1) with an #reboot rule. Open your cron rules with crontab:
crontab -e
Then add a rule to start your monitor script:
#reboot /usr/local/bin/myservermonitor
Alternatively; look at inittab(5) and /etc/inittab. You can add a line in there to have myserver start at a certain init level and be respawned automatically.
Edit.
Let me add some information on why not to use PID files. While they are very popular; they are also very flawed and there's no reason why you wouldn't just do it the correct way.
Consider this:
PID recycling (killing the wrong process):
/etc/init.d/foo start: start foo, write foo's PID to /var/run/foo.pid
A while later: foo dies somehow.
A while later: any random process that starts (call it bar) takes a random PID, imagine it taking foo's old PID.
You notice foo's gone: /etc/init.d/foo/restart reads /var/run/foo.pid, checks to see if it's still alive, finds bar, thinks it's foo, kills it, starts a new foo.
PID files go stale. You need over-complicated (or should I say, non-trivial) logic to check whether the PID file is stale, and any such logic is again vulnerable to 1..
What if you don't even have write access or are in a read-only environment?
It's pointless overcomplication; see how simple my example above is. No need to complicate that, at all.
See also: Are PID-files still flawed when doing it 'right'?
By the way; even worse than PID files is parsing ps! Don't ever do this.
ps is very unportable. While you find it on almost every UNIX system; its arguments vary greatly if you want non-standard output. And standard output is ONLY for human consumption, not for scripted parsing!
Parsing ps leads to a LOT of false positives. Take the ps aux | grep PID example, and now imagine someone starting a process with a number somewhere as argument that happens to be the same as the PID you stared your daemon with! Imagine two people starting an X session and you grepping for X to kill yours. It's just all kinds of bad.
If you don't want to manage the process yourself; there are some perfectly good systems out there that will act as monitor for your processes. Look into runit, for example.
Have a look at monit (http://mmonit.com/monit/). It handles start, stop and restart of your script and can do health checks plus restarts if necessary.
Or do a simple script:
while true
do
/your/script
sleep 1
done
In-line:
while true; do <your-bash-snippet> && break; done
This will restart continuously <your-bash-snippet> if it fails: && break will stop the loop if <your-bash-snippet> stop gracefully (return code 0).
To restart <your-bash-snippet> in all cases:
while true; do <your-bash-snippet>; done
e.g. #1
while true; do openconnect x.x.x.x:xxxx && break; done
e.g. #2
while true; do docker logs -f container-name; sleep 2; done
The easiest way to do it is using flock on file. In Python script you'd do
lf = open('/tmp/script.lock','w')
if(fcntl.flock(lf, fcntl.LOCK_EX|fcntl.LOCK_NB) != 0):
sys.exit('other instance already running')
lf.write('%d\n'%os.getpid())
lf.flush()
In shell you can actually test if it's running:
if [ `flock -xn /tmp/script.lock -c 'echo 1'` ]; then
echo 'it's not running'
restart.
else
echo -n 'it's already running with PID '
cat /tmp/script.lock
fi
But of course you don't have to test, because if it's already running and you restart it, it'll exit with 'other instance already running'
When process dies, all it's file descriptors are closed and all locks are automatically removed.
You should use monit, a standard unix tool that can monitor different things on the system and react accordingly.
From the docs: http://mmonit.com/monit/documentation/monit.html#pid_testing
check process checkqueue.py with pidfile /var/run/checkqueue.pid
if changed pid then exec "checkqueue_restart.sh"
You can also configure monit to email you when it does do a restart.
if ! test -f $PIDFILE || ! psgrep `cat $PIDFILE`; then
restart_process
# Write PIDFILE
echo $! >$PIDFILE
fi
watch "yourcommand"
It will restart the process if/when it stops (after a 2s delay).
watch -n 0.1 "yourcommand"
To restart it after 0.1s instead of the default 2 seconds
watch -e "yourcommand"
To stop restarts if the program exits with an error.
Advantages:
built-in command
one line
easy to use and remember.
Drawbacks:
Only display the result of the command on the screen once it's finished
I'm not sure how portable it is across operating systems, but you might check if your system contains the 'run-one' command, i.e. "man run-one".
Specifically, this set of commands includes 'run-one-constantly', which seems to be exactly what is needed.
From man page:
run-one-constantly COMMAND [ARGS]
Note: obviously this could be called from within your script, but also it removes the need for having a script at all.
I've used the following script with great success on numerous servers:
pid=`jps -v | grep $INSTALLATION | awk '{print $1}'`
echo $INSTALLATION found at PID $pid
while [ -e /proc/$pid ]; do sleep 0.1; done
notes:
It's looking for a java process, so I
can use jps, this is much more
consistent across distributions than
ps
$INSTALLATION contains enough of the process path that's it's totally unambiguous
Use sleep while waiting for the process to die, avoid hogging resources :)
This script is actually used to shut down a running instance of tomcat, which I want to shut down (and wait for) at the command line, so launching it as a child process simply isn't an option for me.
I use this for my npm Process
#!/bin/bash
for (( ; ; ))
do
date +"%T"
echo Start Process
cd /toFolder
sudo process
date +"%T"
echo Crash
sleep 1
done

Automating Killall then Killall level 9

Sometimes I want to killall of a certain process, but running killall doesn't work. So when I try to start the process again, it fails because the previous session is still running. Then I have to tediously run killall -9 on it. So to simplify my life, I created a realkill script and it goes like this:
PIDS=$(ps aux | grep -i "$#" | awk '{ print $2 }') # Get matching pid's.
kill $PIDS 2> /dev/null # Try to kill all pid's.
sleep 3
kill -9 $PIDS 2> /dev/null # Force quit any remaining pid's.
So, Is this the best way to be doing this? In what ways can I improve this script?
Avoid killall if you can since there is not a consistent implementation across all UNIX platforms. Proctools' pkill and pgrep are preferable:
for procname; do
pkill "$procname"
done
sleep 3
for procname; do
# Why check if the process exists if you're just going to `SIGKILL` it?
pkill -9 "$procname"
done
(Edit) If you have processes that are supposed to restart after being killed, you may not want to blindly kill them, so you can gather the PIDs first:
pids=()
for procname; do
pids+=($(pgrep "$procname"))
done
# then proceed with `kill`
That said, you should really try to avoid using SIGKILL if you can. It does not give software a chance to clean up after itself. If a program won't quit shortly after receiving a SIGTERM it is probably waiting for something. Find out what it's waiting for (hardware interrupt? open file?) and fix that, and you can let it close cleanly.
Without understanding what exactly the process does, I would say it probably isn't ideal cos you may have a situation where the processes you are killing are really doing some useful shutdown/cleanup work. Forcing it down with kill -9 may short-circuit that work and could cause corruption if your process is in fact writing data.
Assuming there is no danger of data corruption and it's ok to short-circuit the shutdown, can you just kill -9 the process the first time and be done with it. Do you have access to the developers of the process you are killing to understand what is going on that might prevent the shutdown from happening? The process might have blocked the INT and TERM for good reason.
It is unlikely, but it is possible that in that 3 second wait, a new process could have taken over that PID and the second kill would kill it.

bash: run a command for n minutes, then SIGHUP it

Is there any bash/linux command to launch a long-running command, then kill it after n minutes? I guess I could hack something up with perl using fork and kill, but does anyone know of something already out there?
See the timeout command now in most GNU/Linux distros.
timeout -sHUP 10m command
The same functionality can be achieved with http://www.pixelbeat.org/scripts/timeout
Try it with this one, it starts your command in the background, stores it's PID in $P, waits for some time and kills it with a SIGHUP.
yourCommand & PID=$!
sleep ${someMinutes}m
kill -HUP $PID
Cheers
PS: that assumes a sleep that knows about Nm (minutes), else, you might want to do some math :)
n=5
some_command &
pid=$!
at now + $n minutes <<<"kill -HUP $pid"
The benefit of using at over waiting for sleep is that your script wont block waiting for the sleep to expire. You can go and do other things and at will asynchronously fire at the specified time. Depending on your script that may be a very important feature to have.

How do I write a bash script to restart a process if it dies?

I have a python script that'll be checking a queue and performing an action on each item:
# checkqueue.py
while True:
check_queue()
do_something()
How do I write a bash script that will check if it's running, and if not, start it. Roughly the following pseudo code (or maybe it should do something like ps | grep?):
# keepalivescript.sh
if processidfile exists:
if processid is running:
exit, all ok
run checkqueue.py
write processid to processidfile
I'll call that from a crontab:
# crontab
*/5 * * * * /path/to/keepalivescript.sh
Avoid PID-files, crons, or anything else that tries to evaluate processes that aren't their children.
There is a very good reason why in UNIX, you can ONLY wait on your children. Any method (ps parsing, pgrep, storing a PID, ...) that tries to work around that is flawed and has gaping holes in it. Just say no.
Instead you need the process that monitors your process to be the process' parent. What does this mean? It means only the process that starts your process can reliably wait for it to end. In bash, this is absolutely trivial.
until myserver; do
echo "Server 'myserver' crashed with exit code $?. Respawning.." >&2
sleep 1
done
The above piece of bash code runs myserver in an until loop. The first line starts myserver and waits for it to end. When it ends, until checks its exit status. If the exit status is 0, it means it ended gracefully (which means you asked it to shut down somehow, and it did so successfully). In that case we don't want to restart it (we just asked it to shut down!). If the exit status is not 0, until will run the loop body, which emits an error message on STDERR and restarts the loop (back to line 1) after 1 second.
Why do we wait a second? Because if something's wrong with the startup sequence of myserver and it crashes immediately, you'll have a very intensive loop of constant restarting and crashing on your hands. The sleep 1 takes away the strain from that.
Now all you need to do is start this bash script (asynchronously, probably), and it will monitor myserver and restart it as necessary. If you want to start the monitor on boot (making the server "survive" reboots), you can schedule it in your user's cron(1) with an #reboot rule. Open your cron rules with crontab:
crontab -e
Then add a rule to start your monitor script:
#reboot /usr/local/bin/myservermonitor
Alternatively; look at inittab(5) and /etc/inittab. You can add a line in there to have myserver start at a certain init level and be respawned automatically.
Edit.
Let me add some information on why not to use PID files. While they are very popular; they are also very flawed and there's no reason why you wouldn't just do it the correct way.
Consider this:
PID recycling (killing the wrong process):
/etc/init.d/foo start: start foo, write foo's PID to /var/run/foo.pid
A while later: foo dies somehow.
A while later: any random process that starts (call it bar) takes a random PID, imagine it taking foo's old PID.
You notice foo's gone: /etc/init.d/foo/restart reads /var/run/foo.pid, checks to see if it's still alive, finds bar, thinks it's foo, kills it, starts a new foo.
PID files go stale. You need over-complicated (or should I say, non-trivial) logic to check whether the PID file is stale, and any such logic is again vulnerable to 1..
What if you don't even have write access or are in a read-only environment?
It's pointless overcomplication; see how simple my example above is. No need to complicate that, at all.
See also: Are PID-files still flawed when doing it 'right'?
By the way; even worse than PID files is parsing ps! Don't ever do this.
ps is very unportable. While you find it on almost every UNIX system; its arguments vary greatly if you want non-standard output. And standard output is ONLY for human consumption, not for scripted parsing!
Parsing ps leads to a LOT of false positives. Take the ps aux | grep PID example, and now imagine someone starting a process with a number somewhere as argument that happens to be the same as the PID you stared your daemon with! Imagine two people starting an X session and you grepping for X to kill yours. It's just all kinds of bad.
If you don't want to manage the process yourself; there are some perfectly good systems out there that will act as monitor for your processes. Look into runit, for example.
Have a look at monit (http://mmonit.com/monit/). It handles start, stop and restart of your script and can do health checks plus restarts if necessary.
Or do a simple script:
while true
do
/your/script
sleep 1
done
In-line:
while true; do <your-bash-snippet> && break; done
This will restart continuously <your-bash-snippet> if it fails: && break will stop the loop if <your-bash-snippet> stop gracefully (return code 0).
To restart <your-bash-snippet> in all cases:
while true; do <your-bash-snippet>; done
e.g. #1
while true; do openconnect x.x.x.x:xxxx && break; done
e.g. #2
while true; do docker logs -f container-name; sleep 2; done
The easiest way to do it is using flock on file. In Python script you'd do
lf = open('/tmp/script.lock','w')
if(fcntl.flock(lf, fcntl.LOCK_EX|fcntl.LOCK_NB) != 0):
sys.exit('other instance already running')
lf.write('%d\n'%os.getpid())
lf.flush()
In shell you can actually test if it's running:
if [ `flock -xn /tmp/script.lock -c 'echo 1'` ]; then
echo 'it's not running'
restart.
else
echo -n 'it's already running with PID '
cat /tmp/script.lock
fi
But of course you don't have to test, because if it's already running and you restart it, it'll exit with 'other instance already running'
When process dies, all it's file descriptors are closed and all locks are automatically removed.
You should use monit, a standard unix tool that can monitor different things on the system and react accordingly.
From the docs: http://mmonit.com/monit/documentation/monit.html#pid_testing
check process checkqueue.py with pidfile /var/run/checkqueue.pid
if changed pid then exec "checkqueue_restart.sh"
You can also configure monit to email you when it does do a restart.
if ! test -f $PIDFILE || ! psgrep `cat $PIDFILE`; then
restart_process
# Write PIDFILE
echo $! >$PIDFILE
fi
watch "yourcommand"
It will restart the process if/when it stops (after a 2s delay).
watch -n 0.1 "yourcommand"
To restart it after 0.1s instead of the default 2 seconds
watch -e "yourcommand"
To stop restarts if the program exits with an error.
Advantages:
built-in command
one line
easy to use and remember.
Drawbacks:
Only display the result of the command on the screen once it's finished
I'm not sure how portable it is across operating systems, but you might check if your system contains the 'run-one' command, i.e. "man run-one".
Specifically, this set of commands includes 'run-one-constantly', which seems to be exactly what is needed.
From man page:
run-one-constantly COMMAND [ARGS]
Note: obviously this could be called from within your script, but also it removes the need for having a script at all.
I've used the following script with great success on numerous servers:
pid=`jps -v | grep $INSTALLATION | awk '{print $1}'`
echo $INSTALLATION found at PID $pid
while [ -e /proc/$pid ]; do sleep 0.1; done
notes:
It's looking for a java process, so I
can use jps, this is much more
consistent across distributions than
ps
$INSTALLATION contains enough of the process path that's it's totally unambiguous
Use sleep while waiting for the process to die, avoid hogging resources :)
This script is actually used to shut down a running instance of tomcat, which I want to shut down (and wait for) at the command line, so launching it as a child process simply isn't an option for me.
I use this for my npm Process
#!/bin/bash
for (( ; ; ))
do
date +"%T"
echo Start Process
cd /toFolder
sudo process
date +"%T"
echo Crash
sleep 1
done

Resources