linux/gcc: ldd functionality from inside a C/C++ program - linux

Is there a simple and efficient way to know that a given dynamically linked ELF is missing a required .so for it to run, all from the inside of a C/C++ program?
I need a program with somewhat similar functionality as ldd, without trying to execute the ELF to find out the (met/unmet) dependencies in the system. Perhaps asking the ld-linux.so utility via some library? (I'm a newbie in this part of linux =)
NOTE: reading the source code of ldd was not very helpful for my intentions: it seems that ldd is in fact forking another process and executing the program.
If it's not possible to know that a program has unmet dependencies without executing it, is there some way to, at least, quickly list the .so's required for that ELF all from within my program?
Thanks in advance =)

As per ld.so(8), setting the environment variable LD_TRACE_LOADED_OBJECTS to a non-empty string will give ldd-like results (instead of executing the binary or library normally).
setenv("LD_TRACE_LOADED_OBJECTS", "1", 1);
FILE *ldd = popen("/lib/libz.so");

Have you tried dlopen function? you can use this to load a dynamic library (or, for your case, to ckeck if a library can be loaded).
Having a list of needed libraries is more difficult, take a look to handle_dynamic function on readelf source

What about using ptrace() to trace all open() calls to find all what the program depends on (however, the output includes files,not only libraries).Or maybe filtering the output by the prefix in file name "/lib" helps.

Related

Why does uClibc UCLIBC_BUILD_NOEXECSTACK not actually use the linker flag -Wl,-z,noexecstack

One modern Linux security hardening tactic is to compile & link code with the option -Wl,-z-noexecstack, this marks the DLL or binary as not needing an executable stack. This condition can be checked using readelf or other means.
I have been working with uClibc and noticed that it produces objects (.so files) that do not have this flag set. Yet uClibc has a configuration option UCLIBC_BUILD_NOEXECSTACK which according to the help means:
Mark all assembler files as noexecstack, which will mark uClibc
as not requiring an executable stack. (This doesn't prevent other
files you link against from claiming to need an executable stack, it
just won't cause uClibc to request it unnecessarily.)
This is a security thing to make buffer overflows harder to exploit.
...etc...
On some digging into the Makefiles this is correct - the flag is only applied to the assembler.
Because the flag is only passed to the assembler does this mean that the uClibc devs have missed an important hardening flag? There are other options, for example UCLIBC_BUILD_RELRO which do result in the equivalent flag being added to the linker (as -Wl,-z,relro)
However a casual observer could easily misread this and assume, as I originally did, that UCLIBC_BUILD_NOEXECSTACK is actually marking the .so file when it is in fact not. OpenWRT for example ensures that that flag is set when it builds uClibc.
Why would uClibc not do things the 'usual' way? What am I missing here? Are the libraries (e.g. librt.so, libpthread.so, etc) actually not NX?
EDIT
I was able to play with the Makefiles and get the noexecstack bit by using the -Wl,-z,noexecstack argument. So why would they not use that as well?
OK, it turns out after list conversation and further research that:
the GNU linker sets the DLL / executable stack state based on the 'lowest common denominator' i.e. if any linked or referenced part has an exec stack then the whole object is set this way
the 'correct' way to resolve this problem is actually to find and fix assembly / object files that use an exec stack when they dont need to.
Using the linker to 'fix' things is a workaround if you can't otherwise fix the root cause.
So for uClibc solution is to submit a bug so that the underlying objects get fixed. Otherwise anything linked with static libraries wont get a non-exec stack.
For my own question, if building a custom firmware not using any static libraries it is possibly sufficient to use the linker flag.
References:
Ubuntu Security Team - Executable Stacks

Executing machine codes attached at the end of an executable

I have a object file which has a main() function inside and just needs to be linked with crt... objects to be an executable . Unfortunately I can only compile and I can not link it to be an executable .
so I decided to create a c program ( on a pc with working GCC and linker ) to attach object(s) at the end of itself and execute the codes attached at run time (simulating a linked object ).
I saw DL API but I do'nt know how to use it for the problem I said .
May sb help me to know , how I can executing a code attached at the end of an executable .
Avoid doing that; it would be a mess .... And it probably won't reliably work, at least if the program is dynamically linked to the  libc6.so (e.g. because of ASLR)
Just use shared objects and dynamically linked libraries (See dynamic linker wikipage). You need to learn about dlopen(3) etc.
If you really insist, take many weeks to learn a lot more: read Levine's book on Linker and Loaders, read Advanced Linux Programming, read many man pages (including execve(2), mmap(2), elf(5), ld.so(8), ...) study the kernel code for execve and mmap, the GNU libc and MUSL libc source codes (for details about implementations of the dynamic linker), the x86-64 ABI or the ABI for your target processor (is it an ARM?), learn more about the GNU binutils etc, etc, etc.
In short, your life is too short doing such messy things, unless you are already an expert, e.g. able to implement your own dynamic linker.
addenda
Apparently your real issue seems to use tinycc on the ARM (under Android I am guessing). I would then ask on their mailing list (perhaps contribute with some patch), or simply use binutils and make your own GNU ld linker script to make it work. Then the question becomes entirely different and completely unrelated to your original question. There might be some previous attempts to solve that, according to Google searches.

How can I convert dynamically linked application to statically one?

I have an application, say gedit, which is dynamically linked and I don't have the source code. So I can not compile it as I like. what I want to do is to make it statically linked and move it to the system which doesn't have the necessary libraries to run that application. So is it possible to do it and how?
It is theoretically possible. You basically have to do the same job that the dynamic linker does, with some modifications, i.e.
dump all sections from the original file
resolve symbols
locate libraries
instead of loading them into memory, assemble them into a "virtual image"
resolve internal links
dump the whole thing in a independent file.
So objdump, readelf, and objcopy will be some of your friends.
The task is not easy and the result will be neither automatic, nor (probably) stable.
You may want to check out this code by someone else that tried the same, by actually intercepting the dynamic linker (i.e. all steps above, except the last) and dumping the results to disk.
It is based on this tool, so it's anyone's bet whether it works on the newest kernels.
(It probably doesn't - and you need at least to patch it to reflect the new structures. This is my attempt at doing so. Caveat emptor).

Loading Linux libraries at runtime

I think a major design flaw in Linux is the shared object hell when it comes to distributing programs in binary instead of source code form.
Here is my specific problem: I want to publish a Linux program in ELF binary form that should run on as many distributions as possible so my mandatory dependencies are as low as it gets: The only libraries required under any circumstances are libpthread, libX11, librt and libm (and glibc of course). I'm linking dynamically against these libraries when I build my program using gcc.
Optionally, however, my program should also support ALSA (sound interface), the Xcursor, Xfixes, and Xxf86vm extensions as well as GTK. But these should only be used if they are available on the user's system, otherwise my program should still run but with limited functionality. For example, if GTK isn't there, my program will fall back to terminal mode. Because my program should still be able to run without ALSA, Xcursor, Xfixes, etc. I cannot link dynamically against these libraries because then the program won't start at all if one of the libraries isn't there.
So I need to manually check if the libraries are present and then open them one by one using dlopen() and import the necessary function symbols using dlsym(). This, however, leads to all kinds of problems:
1) Library naming conventions:
Shared objects often aren't simply called "libXcursor.so" but have some kind of version extension like "libXcursor.so.1" or even really funny things like "libXcursor.so.0.2000". These extensions seem to differ from system to system. So which one should I choose when calling dlopen()? Using a hardcoded name here seems like a very bad idea because the names differ from system to system. So the only workaround that comes to my mind is to scan the whole library path and look for filenames starting with a "libXcursor.so" prefix and then do some custom version matching. But how do I know that they are really compatible?
2) Library search paths: Where should I look for the *.so files after all? This is also different from system to system. There are some default paths like /usr/lib and /lib but *.so files could also be in lots of other paths. So I'd have to open /etc/ld.so.conf and parse this to find out all library search paths. That's not a trivial thing to do because /etc/ld.so.conf files can also use some kind of include directive which means that I have to parse even more .conf files, do some checks against possible infinite loops caused by circular include directives etc. Is there really no easier way to find out the search paths for *.so?
So, my actual question is this: Isn't there a more convenient, less hackish way of achieving what I want to do? Is it really so complicated to create a Linux program that has some optional dependencies like ALSA, GTK, libXcursor... but should also work without it! Is there some kind of standard for doing what I want to do? Or am I doomed to do it the hackish way?
Thanks for your comments/solutions!
I think a major design flaw in Linux is the shared object hell when it comes to distributing programs in binary instead of source code form.
This isn't a design flaw as far as creators of the system are concerned; it's an advantage -- it encourages you to distribute programs in source form. Oh, you wanted to sell your software? Sorry, that's not the use case Linux is optimized for.
Library naming conventions: Shared objects often aren't simply called "libXcursor.so" but have some kind of version extension like "libXcursor.so.1" or even really funny things like "libXcursor.so.0.2000".
Yes, this is called external library versioning. Read about it here. As should be clear from that description, if you compiled your binaries using headers on a system that would normally give you libXcursor.so.1 as a runtime reference, then the only shared library you are compatible with is libXcursor.so.1, and trying to dlopen libXcursor.so.0.2000 will lead to unpredictable crashes.
Any system that provides libXcursor.so but not libXcursor.so.1 is either a broken installation, or is also incompatible with your binaries.
Library search paths: Where should I look for the *.so files after all?
You shouldn't be trying to dlopen any of these libraries using their full path. Just call dlopen("libXcursor.so.1", RTLD_GLOBAL);, and the runtime loader will search for the library in system-appropriate locations.

Linux user-space ELF loader

I need to do a rather unusual thing: manually execute an elf executable. I.e. load all sections into right places, query main() and call it (and cleanup then). Executable will be statically linked, so there will be no need to link libraries. I also control base address, so no worries about possible conflicts.
So, is there are any libraries for that?
I found OSKit and its liboskit_exec, but project seems to be dead since 2002.
I'm OK with taking parts of projects (respecting licenses, of course) and tailoring them to my need, but as I'm quite a noob in the linux world, I dont even know where to find those parts! :)
PS. I need that for ARM platform.
UPD Well, the matter of loading elfs seems to require some good knowledge about it (sigh), so I'm out to read some specs and manuals. And I think I will stick to bionic/linker and libelfsh. Thanks guys!
Summarized findings:
libelf: http://directory.fsf.org/project/libelf/
elfsh and libelfsh (are now part of eresi): http://www.eresi-project.org/
elfio (another elf library): http://sourceforge.net/projects/elfio/
OSKit and liboskit_exec (outdated): http://www.cs.utah.edu/flux/oskit/
bionic/linker: https://android.googlesource.com/platform/bionic
A quick apt-cache search suggests libelf1, libelfg0 and/or libelfsh0. I think the elfsh program (in the namesake package) might be an interesting practical example of how to use libelfsh0.
I haven't tried any myself, but I hope they might be helpful. Good luck :-)
Google's Android, in it's "bionic" libc implementation, has a completely reimplemented ELF loader. It's reasonably clean, and probably a better source than gilbc if you're looking for something simple.
Take a look at libelf for reading the executable format. You are going to have trouble with this I think.
Sounds like, as you don't need libraries for anything, why not just mmap your executable, set data about various memory areas and jmp/b in?
I don't know if ARM has an NX-bit equivalent, but worth checking.
This tool contains an ELF loader: http://bitwagon.com/rtldi/rtldi.html
I reused the code from rtldi for an ELF chainloader in another project. The code is here: http://svn.gna.org/viewcvs/plash/trunk/chroot-jail/elf-chainloader/?rev=877 and there is some background here: http://plash.beasts.org/wiki/Story16. (Apparently I have to break these links because stackoverflow won't let me post >1 link!)

Resources