We have a client who is looking for a means to import and categorize a large amount of textual data. This data has to be categorized and it's been suggested that the easiest way to to do this would be to look at the description field and try to match the words held there to see if a category can be derived for that particular record.
It was thought the best way to do this would be matching the words to key words held against each category and if that was unsuccessful then to use some kind of synonym look up to see if this could be used instead. So for example, if a particular record had the word "automobile" in it then a synonym look up could match that word to the word "car" which would be held against the category "vehicle".
Does anyone know of a web service or other means of looking up a dictionary to find synonyms for a particular word? The project manager has suggested buying a Google Enterprise Search license for this but from what I can make out that doesn't offer what these guys are looking for.
Any suggestions of other getting the client what they are looking for would be gratefully accepted.
Thanks! I'll look into Wordnet.
Do you know of any other types of textual classification software products out there. I see there's some discussion of using Bayasian algorithms for this but I can't see any real world examples of it.
The first thing that comes to mind is Wordnet. Wordnet is a human-generated database of words and related words, including synonyms. The Wikipedia Wordnet entry lists several interfaces to Wordnet. I believe some of them are web services.
You can also roll your own. Manning and Schutze's chapter 5 (free PDF) shows ways to do this.
Having said that, are you solving the right problem? How do you build the category list?
Is it a hierarchy? a tag cloud? See Clay Shirky's Ontology is Overrated for a critique of hierarchical categories. I believe that synonyms are less important if you base your classification on sets of words (Naive Bayes, for example) rather than on single words.
You should look at using WordNet. You can visit their website http://wordnet.princeton.edu/ to get more information, but there are libraries available for integrating against them in lots of languages.
Go to their online tool to see the use of it in action here: http://wordnetweb.princeton.edu/perl/webwn. If you look up a word, then click on "S" next to each definition, you'll get a list of semantically related words to that definition.
I also think you should check out software that will allow you to perform "document clustering." Here is an example: http://glaros.dtc.umn.edu/gkhome/cluto/cluto/overview. That should help you bootstrap the category creation process.
I think this will help get you a long way toward what you want!
For text classification you can take a look at Apache Mahout.
Related
I'm recently interested in NLP, and would like to build up search engine for product recommendation. (Actually I'm always wondering about how search engine for Google/Amazon is built up)
Take Amazon product as example, where I could access all "word" information about one product:
Product_Name Description ReviewText
"XXX brand" "Pain relief" "This is super effective"
By applying nltk and gensim packages I could easily compare similarity of different products and make recommendations.
But here's another question I feel very vague about:
How to build a search engine for such products?
For example, if I feel pain and would like to search for medicine online, I'd like to type-in "pain relief" or "pain", whose searching results should include "XXX brand".
So this sounds more like keyword extraction/tagging question? How should this be done in NLP? I know corpus should contain all but single words, so it's like:
["XXX brand" : ("pain", 1),("relief", 1)]
So if I typed in either "pain" or "relief" I could get "XXX brand"; but what about I searched "pain relief"?
I could come up with idea that directly call python in my javascript for calculate similarities of input words "pain relief" on browser-based server and make recommendation; but that's kind of do-able?
I still prefer to build up very big lists of keywords at backends, stored in datasets/database and directly visualized in web page of search engine.
Thanks!
Even though this does not provide a full how-to answer, there are two things that might be helpful.
First, it's important to note that Google does not only treat singular words but also ngrams.
More or less every NLP problem and therefore also information retrieval from text needs to tackle ngrams. This is because phrases carry way more expressiveness and information than singular tokens.
That's also why so called NGramAnalyzers are popular in search engines, be it Solr or elastic. Since both are based on Lucene, you should take a look here.
Relying on either framework, you can use a synonym analyser that adds for each word the synonyms you provide.
For example, you could add relief = remedy (and vice versa if you wish) to your synonym mapping. Then, both engines would retrieve relevant documents regardless if you search for "pain relief" or "pain remedy". However, you should probably also read this post about the issues you might encounter, especially when aiming for phrase synonyms.
I'm embarking on a project for a non-profit organization to help process and classify 1000's of reports annually from their field workers / contractors the world over. I'm relatively new to NLP and as such wanted to seek the group's guidance on the approach to solve our problem.
I'll highlight the current process, and our challenges and would love your help on the best way to solve our problem.
Current process: Field officers submit reports from locally run projects in the form of best practices. These reports are then processed by a full-time team of curators who (i) ensure they adhere to a best-practice template and (ii) edit the documents to improve language/style/grammar.
Challenge: As the number of field workers increased the volume of reports being generated has grown and our editors are now becoming the bottle-neck.
Solution: We would like to automate the 1st step of our process i.e., checking the document for compliance to the organizational best practice template
Basically, we need to ensure every report has 3 components namely:
1. States its purpose: What topic / problem does this best practice address?
2. Identifies Audience: Who is this for?
3. Highlights Relevance: What can the reader do after reading it?
Here's an example of a good report submission.
"This document introduces techniques for successfully applying best practices across developing countries. This study is intended to help low-income farmers identify a set of best practices for pricing agricultural products in places where there is no price transparency. By implementing these processes, farmers will be able to get better prices for their produce and raise their household incomes."
As of now, our approach has been to use RegEx and check for keywords. i.e., to check for compliance we use the following logic:
1 To check "states purpose" = we do a regex to match 'purpose', 'intent'
2 To check "identifies audience" = we do a regex to match with 'identifies', 'is for'
3 To check "highlights relevance" = we do a regex to match with 'able to', 'allows', 'enables'
The current approach of RegEx seems very primitive and limited so I wanted to ask the community if there is a better way to solving this problem using something like NLTK, CoreNLP.
Thanks in advance.
Interesting problem, i believe its a thorough research problem! In natural language processing, there are few techniques that learn and extract template from text and then can use them as gold annotation to identify whether a document follows the template structure. Researchers used this kind of system for automatic question answering (extract templates from question and then answer them). But in your case its more difficult as you need to learn the structure from a report. In the light of Natural Language Processing, this is more hard to address your problem (no simple NLP task matches with your problem definition) and you may not need any fancy model (complex) to resolve your problem.
You can start by simple document matching and computing a similarity score. If you have large collection of positive examples (well formatted and specified reports), you can construct a dictionary based on tf-idf weights. Then you can check the presence of the dictionary tokens. You can also think of this problem as a binary classification problem. There are good machine learning classifiers such as svm, logistic regression which works good for text data. You can use python and scikit-learn to build programs quickly and they are pretty easy to use. For text pre-processing, you can use NLTK.
Since the reports will be generated by field workers and there are few questions that will be answered by the reports (you mentioned about 3 specific components), i guess simple keyword matching techniques will be a good start for your research. You can gradually move to different directions based on your observations.
This seems like a perfect scenario to apply some machine learning to your process.
First of all, the data annotation problem is covered. This is usually the most annoying problem. Thankfully, you can rely on the curators. The curators can mark the specific sentences that specify: audience, relevance, purpose.
Train some models to identify these types of clauses. If all the classifiers fire for a certain document, it means that the document is properly formatted.
If errors are encountered, make sure to retrain the models with the specific examples.
If you don't provide yourself hints about the format of the document this is an open problem.
What you can do thought, is ask people writing report to conform to some format for the document like having 3 parts each of which have a pre-defined title like so
1. Purpose
Explains the purpose of the document in several paragraph.
2. Topic / Problem
This address the foobar problem also known as lorem ipsum feeling text.
3. Take away
What can the reader do after reading it?
You parse this document from .doc format for instance and extract the three parts. Then you can go through spell checking, grammar and text complexity algorithm. And finally you can extract for instance Named Entities (cf. Named Entity Recognition) and low TF-IDF words.
I've been trying to do something very similar with clinical trials, where most of the data is again written in natural language.
If you do not care about past data, and have control over what the field officers write, maybe you can have them provide these 3 extra fields in their reports, and you would be done.
Otherwise; CoreNLP and OpenNLP, the libraries that I'm most familiar with, have some tools that can help you with part of the task. For example; if your Regex pattern matches a word that starts with the prefix "inten", the actual word could be "intention", "intended", "intent", "intentionally" etc., and you wouldn't necessarily know if the word is a verb, a noun, an adjective or an adverb. POS taggers and the parsers in these libraries would be able to tell you the type (POS) of the word and maybe you only care about the verbs that start with "inten", or more strictly, the verbs spoken by the 3rd person singular.
CoreNLP has another tool called OpenIE, which attempts to extract relations in a sentence. For example, given the following sentence
Born in a small town, she took the midnight train going anywhere
CoreNLP can extract the triple
she, took, midnight train
Combined with the POS tagger for example; you would also know that "she" is a personal pronoun and "took" is a past tense verb.
These libraries can accomplish many other tasks such as tokenization, sentence splitting, and named entity recognition and it would be up to you to combine all of these tools with your domain knowledge and creativity to come up with a solution that works for your case.
I'm trying to build a local version of the freebase search api using their quad dumps. I'm wondering what algorithm they use to match names? As an example, if you go to freebase.com and type in "Hiking" you get
"Apo Hiking Society"
"Hiking"
"Hiking Georgia"
"Hiking Virginia's national forests"
"Hiking trail"
Wow, a lot of guesses! I hope I don't muddy the waters too much by not guessing too.
The auto-complete box is basically powered by Freebase Suggest which is powered, in turn, by the Freebase Search service. Strings which are indexed by the search service for matching include: 1) the name, 2) all aliases in the given language, 3) link anchor text from the associated Wikipedia articles and 4) identifiers (called keys by Freebase), which includes things like Wikipedia article titles (and redirects).
How the various things are weighted/boosted hasn't been disclosed, but you can get a feel for things by playing with it for while. As you can see from the API, there's also the ability to do filtering/weighting by types and other criteria and this can come into play depending on the context. For example, if you're adding a record label to an album, topics which are typed as record labels will get a boost relative to things which aren't (but you can still get to things of other types to allow for the use case where your target topic doesn't hasn't had the appropriate type applied yet).
So that gives you a little insight into how their service works, but why not build a search service that does what you need since you're starting from scratch anyway?
BTW, pre-Google the Metaweb search implementation was based on top of Lucene, so you could definitely do worse than using that as your starting point. You can read some of the details in the mailing list archive
Probably they use an inverted Index over selected fields, such as the English name, aliases and the Wikipedia snippet displayed. In your application you can achieve that using something like Lucene.
For the algorithm side, I find the following paper a good overview
Zobel and Moffat (2006): "Inverted Files for Text Search Engines".
Most likely it's a trie with lexicographical order.
There are a number of algorithms available: Boyer-Moore, Smith-Waterman-Gotoh, Knuth Morriss-Pratt etc. You might also want to check up on Edit distance algorithms such as Levenshtein. You will need to play around to see which best suits your purpose.
An implementation of such algorithms is the Simmetrics library by the University of Sheffield.
So I know this is a kind of a large topic, but I need to accept a chunk of text, and extract the most interesting keywords from it. The text comes from TV captions, so the subject can range from news to sports to pop culture references. It is possible to provide the type of show the text came from.
I have an idea to match the text against a dictionary of terms I know to be interesting somehow.
Which libraries for Haskell can help me with this?
Assuming I do have a dictionary of interesting terms, and a database to store them in, is there a particular approach you'd recommend to matching keywords within the text?
Is there an obvious approach I'm not thinking of?
I'd stem the words in the chunks and then search for all terms in the dict
just two random libs:
stem http://hackage.haskell.org/packages/archive/stemmer/0.2/doc/html/NLP-Stemmer-C.html
search http://hackage.haskell.org/packages/archive/sphinx/0.2.1/doc/html/Text-Search-Sphinx.html
To expand on bpgergo answer (but I don't have any haskell-specific info), it's pretty straightforward to enter documents into a relational database and index them with SOLR/lucene or sphinx, either of which should have a stemmer in their default/suggested configuration. And then you can search on which docs have pairs, triples, etc of your list of "interesting terms"
You might look at Named entity recognition, statistically unusual Phrase Detection, auto-tag generation, topics like that. Lingpipe is a good place to start, also these books:
http://alias-i.com/lingpipe/demos/tutorial/read-me.html
http://www.manning.com/marmanis/excerpt_contents.html
http://www.manning.com/alag/excerpt_contents.html
I need to categorize a text or word to a particular category. For example, the text 'Pink Floyd' should be categorized as 'music' or 'Wikimedia' as 'technology' or 'Einstein' as 'science'.
How can this be done? Is there a way I can use the DBpedia for the same? If not, the database has to be trained from time to time, right?
This is a text classification problem. Manning, Raghavan and Schütze's Information Retrieval book chapter is a nice introduction. I think you do not need DBPedia nor NER for this, just a small labeled training data set with enough labeled examples for all of your classes.
Yes, DBpedia may be a good choice for this kind of problem. You'll have to
squash the DBpedia category structure so you get the right granularity (e.g., Pink Floyd is listed under Capitol Records artists and a host of other categories, but not directly under Music). Maybe pick a few large categories and try to find whether your concepts are listed indirectly in them;
normalize text; Einstein is listed as Albert Einstein, not einstein
deal with ambiguity due to terms describing multiple concepts and concepts belonging to multiple top-level categories.
These problems may be solvable using machine learning, but I only see how it can be done if you extract these terms, along with relevant features, from running text. But in that case, you might just as well classify the entire text into one of the categories you choose in step 1.
This is the well-studied named entity recognition problem. Unless you have a particular need to roll your own technology (hint: it's a hard problem in general), using Gate, or perhaps one of the online services that builds on it (e.g. TSO's Data Enrichment Service), would be a good option. An alternative online service is OpenCalais.
Mapping your categries to DBPedia.
Index with lucene selected DBPedia categories and label data with your category names.
Do search for your data - tokenization, normalization will be done by Lucene.
This approach is somehow related to KNN classification.
Yes DBpedia is a good choice for text classification, as you can use its predicates/ relations to query and to extract the meaningful information for the particular category.
You can look into the endpoint for querying Dbpedia:
http://dbpedia.org/sparql
Further, learn the basic syntax of SPARQL to query on the endpoint from the following link:
http://www.w3.org/TR/rdf-sparql-query/