Multivariate mapping / regression with objective function - statistics

Overview
I have a multivariate timeseries of "inputs" of dimension N that I want to map to an output timeseries of dimension M, where M < N. The inputs are bounded in [0,k] and the outputs are in [0,1]. Let's call the input vector for some time slice in the series "I[t]" and the output vector "O[t]".
Now if I knew the optimal mapping of pairs <I[t], O[t]>, I could use one of the standard multivariate regression / training techniques (such as NN, SVM, etc) to discover a mapping function.
Problem
I do not know the relationship between specific <I[t], O[t]> pairs, rather have a view on the overall fitness of the output timeseries, i.e. the fitness is governed by a penalty function on the complete output series.
I want to determine the mapping / regressing function "f", where:
O[t] = f (theta, I[t])
Such that penalty function P(O) is minimized:
minarg P( f(theta, I) )
theta
[Note that the penalty function P is being applied the resultant series generated from multiple applications of f to the I[t]'s across time. That is f is a function of I[t] and not the whole timeseries]
The mapping between I and O is complex enough that I do not know what functions should form its basis. Therefore expect to have to experiment with a number of basis functions.
Have a view on one way to approach this, but do not want to bias the proposals.
Ideas?

... depends on your definition of optimal mapping and penalty function. I'm not sure if this is the direction you're taking, but here's a couple of suggestions:
For example you can find a mapping of the data from the higher dimensional space to a lower dimension space that tries to preserve the original similarity between data points (something like Multidimensional Scaling [MDS]).
Or you can prefer to map the data to a lower dimension that accounts for as much of the variability in the data as possible (Principal Component Analysis [PCA]).

Related

Find top K cosine similar vectors to a given vector efficiently

The problem:
Suppose I have a group of around 1,000,000 short documents D (no more than 50 words each), and I want to let users to supply a document from the same group D, and and get the top K similar documents from D.
My approach:
My first approach was to preprocess the group D by applying simple tf-idf, and after I have vector for each document, which is extremely sparse, to use a simple nearest neighbours algorithm based on cosine similarity.
Then, on query time, to justuse my static nearest neighbours table which its size is 1,000,000 x K, without any further calculations.
After applying tf-idf, I got vectors in size ~200,000, which means now I have a very sparse table (that can be stored efficiently in memory using sparse vectors) in size 1,000,000 x 200,000.
However, calculating the nearest neighbours model took me more than one day, and still haven't finished.
I tried to lower the vectors dimension by applying HashingTF, that utilizes the hasing trick, instead, so I can set the dimension to a constant one (in my case, i used 2^13 for uninfied hashing), but still I get the same bad performance.
Some technical information:
I use Spark 2.0 for the tf-idf calculation, and sklearn NearestNeighbours on the collected data.
Is thier any more efficient way to achieve that goal?
Thanks in advance.
Edit:
I had an idea to try a LSH based approximation similarity algorithm like those implemented in spark as described here, but could not find one that supports the 'cosine' similarity metric.
There were some requirements for the algorithm on the relation between training instances and the dimensions of your vectors , but you can try DIMSUM.
You can find the paper here.

Under what conditions can two classes have different average values, yet be indistinguishable to a SVM?

I am asking because I have observed sometimes in neuroimaging that a brain region might have different average activation between two experimental conditions, but sometimes an SVM classifier somehow can't distinguish the patterns of activation between the two conditions.
My intuition is that this might happen in cases where the within-class variance is far greater than the between-class variance. For example, suppose we have two classes, A and B, and that for simplicity our data consists just of integers (rather than vectors). Let the data falling under class A be 0,0,0,0,0,10,10,10,10,10. Let the data falling under class B be 1,1,1,1,1,11,11,11,11,11. Here, A and B are clearly different on average, yet there's no decision boundary that would allow A and B to be distinguished. I believe this logic would hold even if our data consisted of vectors, rather than integers.
Is this a special case of some broader range of cases where an SVM would fail to distinguish two classes that are different on average? Is it possible to delineate the precise conditions under which an SVM classifier would fail to distinguish two classes that differ on average?
EDIT: Assume a linear SVM.
As described in the comments - there are no such conditions because SVM will separate data just fine (I am not talking about any generalisation here, just separating training data). For the rest of the answer I am assuming there are no two identical points with different labels.
Non-linear case
For a kernel case, using something like RBF kernel, SVM will always perfectly separate any training set, given that C is big enough.
Linear case
If data is linearly separable then again - with big enough C it will separate data just fine. If data is not linearly separable, cranking up C as much as possible will lead to smaller and smaller training error (of course it will not get 0 since data is not linearly separable).
In particular for the data you provided kernelized SVM will get 100%, and any linear model will get 50%, but it has nothing to do with means being different or variances relations - it is simply a dataset where any linear separator has at most 50% accuracy, literally every decision point, thus it has nothing to do with SVM. In particular it will separate them "in the middle", meaning that the decision point will be somewhere around "5".

How to find a regression line for a closed set of data with 4 parameters in matlab or excel?

I have a set of data I have acquired from simulations. There are 3 parameters that go into my simulations and I get one result out.
I can graph the data from the small subset i have and see the trends for each input, but I need to be able to extrapolate this and get some form of a regression equation seeing as the simulation takes a long time.
In matlab or excel, is it possible to list the inputs and outputs to obtain a 4 parameter regression line for a given set of information?
Before this gets flagged as a duplicate, i understand polyfit will give me an equation of best fit and will be as accurate as i want it, but i need the equation to correspond to the inputs, not just a regression line.
In other words if i 20 simulations of inputs a, b, c and output y, is there a way to obtain a "best fit":
y=B0+B1*a+B2*b+B3*c
using the data?
My usual recommendation for higher-dimensional curve fitting is to pose the problem as a minimization problem (that may be unneeded here with the nice linear model you've proposed, but I'm a hammer-nail guy sometimes).
It starts by creating a correlation function (the functional form you think maps your inputs to the output) given a vector of fit parameters p and input data xData:
correl = #(p,xData) p(1) + p(2)*xData(:,1) + p(3)*xData(:2) + p(4)*xData(:,3)
Then you need to define a function to minimize given the parameter vector, which I call the objective; this is typically your correlation minus you output data.
The details of this function are determined from the solver you'll use (see below).
All of the method need a starting vector pGuess, which is dependent on the trends you see.
For nonlinear correlation function, finding a good pGuess can be a trial but necessary for a good solution.
fminsearch
To use fminsearch, the data must be collapsed to a scalar value using some norm (2 here):
x = [a,b,c]; % your input data as columns of x
objective = #(p) norm(correl(p,x) - y,2);
p = fminsearch(objective,pGuess); % you need to define a good pGuess
lsqnonlin
To use lsqnonlin (which solves the same problem as above in different ways), the norm-ing of the objective is not needed:
objective = #(p) correl(p,x) - y ;
p = lsqnonlin(objective,pGuess); % you need to define a good pGuess
(You can also specify lower and upper bounds on the parameter solution, which is nice.)
lsqcurvefit
To use lsqcurvefit (which is simply a wrapper for lsqnonlin), only the correlation function is needed along with the data:
p = lsqcurvefit(correl,pGuess,x,y); % you need to define a good pGuess

Representing classification confidence

I am working on a simple AI program that classifies shapes using unsupervised learning method. Essentially I use the number of sides and angles between the sides and generate aggregates percentages to an ideal value of a shape. This helps me create some fuzzingness in the result.
The problem is how do I represent the degree of error or confidence in the classification? For example: a small rectangle that looks very much like a square would yield night membership values from the two categories but can I represent the degree of error?
Thanks
Your confidence is based on used model. For example, if you are simply applying some rules based on the number of angles (or sides), you have some multi dimensional representation of objects:
feature 0, feature 1, ..., feature m
Nice, statistical approach
You can define some kind of confidence intervals, baesd on your empirical results, eg. you can fit multi-dimensional gaussian distribution to your empirical observations of "rectangle objects", and once you get a new object you simply check the probability of such value in your gaussian distribution, and have your confidence (which would be quite well justified with assumption, that your "observation" errors have normal distribution).
Distance based, simple approach
Less statistical approach would be to directly take your model's decision factor and compress it to the [0,1] interaval. For example, if you simply measure distance from some perfect shape to your new object in some metric (which yields results in [0,inf)) you could map it using some sigmoid-like function, eg.
conf( object, perfect_shape ) = 1 - tanh( distance( object, perfect_shape ) )
Hyperbolic tangent will "squash" values to the [0,1] interval, and the only remaining thing to do would be to select some scaling factor (as it grows quite quickly)
Such approach would be less valid in the mathematical terms, but would be similar to the approach taken in neural networks.
Relative approach
And more probabilistic approach could be also defined using your distance metric. If you have distances to each of your "perfect shapes" you can calculate the probability of an object being classified as some class with assumption, that classification is being performed at random, with probiability proportional to the inverse of the distance to the perfect shape.
dist(object, perfect_shape1) = d_1
dist(object, perfect_shape2) = d_2
dist(object, perfect_shape3) = d_3
...
inv( d_i )
conf(object, class_i) = -------------------
sum_j inv( d_j )
where
inv( d_i ) = max( d_j ) - d_i
Conclusions
First two ideas can be also incorporated into the third one to make use of knowledge of all the classes. In your particular example, the third approach should result in confidence of around 0.5 for both rectangle and circle, while in the first example it would be something closer to 0.01 (depending on how many so small objects would you have in the "training" set), which shows the difference - first two approaches show your confidence in classifing as a particular shape itself, while the third one shows relative confidence (so it can be low iff it is high for some other class, while the first two can simply answer "no classification is confident")
Building slightly on what lejlot has put forward; my preference would be to use the Mahalanobis distance with some squashing function. The Mahalanobis distance M(V, p) allows you to measure the distance between a distribution V and a point p.
In your case, I would use "perfect" examples of each class to generate the distribution V and p is the classification you want the confidence of. You can then use something along the lines of the following to be your confidence interval.
1-tanh( M(V, p) )

How to scale input DBSCAN in scikit-learn

Should the input to sklearn.clustering.DBSCAN be pre-processeed?
In the example http://scikit-learn.org/stable/auto_examples/cluster/plot_dbscan.html#example-cluster-plot-dbscan-py the distances between the input samples X are calculated and normalized:
D = distance.squareform(distance.pdist(X))
S = 1 - (D / np.max(D))
db = DBSCAN(eps=0.95, min_samples=10).fit(S)
In another example for v0.14 (http://jaquesgrobler.github.io/online-sklearn-build/auto_examples/cluster/plot_dbscan.html) some scaling is done:
X = StandardScaler().fit_transform(X)
db = DBSCAN(eps=0.3, min_samples=10).fit(X)
I base my code on the latter example and have the impression clustering works better with this scaling. However, this scaling "Standardizes features by removing the mean and scaling to unit variance". I try to find 2d clusters. If I have my clusters distributed in a squared area - let's say 100x100 I see no problem in the scaling. However, if the are distributed in an rectangled area e.g. 800x200 the scaling 'squeezes' my samples and changes the relative distances between them in one dimension. This deteriorates the clustering, doesn't it? Or am I understanding sth. wrong?
Do I need to apply some preprocessing at all, or can I simply input my 'raw' data?
It depends on what you are trying to do.
If you run DBSCAN on geographic data, and distances are in meters, you probably don't want to normalize anything, but set your epsilon threshold in meters, too.
And yes, in particular a non-uniform scaling does distort distances. While a non-distorting scaling is equivalent to just using a different epsilon value!
Note that in the first example, apparently a similarity and not a distance matrix is processed. S = (1 - D / np.max(D)) is a heuristic to convert a similarity matrix into a dissimilarity matrix. Epsilon 0.95 then effectively means at most "0.05 of the maximum dissimilarity observed". An alternate version that should yield the same result is:
D = distance.squareform(distance.pdist(X))
S = np.max(D) - D
db = DBSCAN(eps=0.95 * np.max(D), min_samples=10).fit(S)
Whereas in the second example, fit(X) actually processes the raw input data, and not a distance matrix. IMHO that is an ugly hack, to overload the method this way. It's convenient, but it leads to misunderstandings and maybe even incorrect usage sometimes.
Overall, I would not take sklearn's DBSCAN as a referene. The whole API seems to be heavily driven by classification, not by clustering. Usually, you don't fit a clustering, you do that for supervised methods only. Plus, sklearn currently does not use indexes for acceleration, and needs O(n^2) memory (which DBSCAN usually would not).
In general, you need to make sure that your distance works. If your distance function doesn't work no distance-based algorithm will produce the desired results. On some data sets, naive distances such as Euclidean work better when you first normalize your data. On other data sets, you have a good understanding on what distance is (e.g. geographic data. Doing a standardization on this obivously does not make sense, nor does Euclidean distance!)

Resources