Generating an infinite sequence in Haskell - haskell

I know that infinite sequences are possible in Haskell - however, I'm not entirely sure how to generate one
Given a method
generate::Integer->Integer
which take an integer and produces the next integer in the sequence, how would I build an infinite sequence out of this?

If you want your sequence to start from 1 then it is -
iterate generate 1
Please notice that first letter of function is lowercase, not uppercase. Otherwise it would be data type, not function.
//edit: I just realized not just data types start with capital, it could be data constructor or type class as well, but that wasn't the point. :)

Adding to Matajon's answer: a way to discover the iterate function other than asking here would be to use Hoogle.
Hoogle's first answer for the query (a -> a) -> [a] is iterate.
Update (2023): Hoogle's scoring appears to have changed and iterate is no longer given with this query. It's full type has another a parameter and with the full type it is given in the results.

There are several ways to do it, but one is:
gen :: (a -> a) -> a -> [a]
gen f s = s : gen f (f s)
This function takes a functon f and some valus s and returns s, after wich it calls itself with that same f, and the result of f s. Demonstration:
Prelude> :t succ
succ :: (Enum a) => a -> a
Prelude> let gen f s = s : gen f (f s)
Prelude> take 10 $ gen succ 3
[3,4,5,6,7,8,9,10,11,12]
In the above example succ acts as the function generate :: Integer -> Integer which you mention. But observe that gen will work with any function of type a -> a.
Edit: and indeed, gen is identical to the function iterate from the Prelude (and Data.List).

Related

Getting all function arguments in haskel as list

Is there a way in haskell to get all function arguments as a list.
Let's supose we have the following program, where we want to add the two smaller numbers and then subtract the largest. Suppose, we can't change the function definition of foo :: Int -> Int -> Int -> Int. Is there a way to get all function arguments as a list, other than constructing a new list and add all arguments as an element of said list? More importantly, is there a general way of doing this independent of the number of arguments?
Example:
module Foo where
import Data.List
foo :: Int -> Int -> Int -> Int
foo a b c = result!!0 + result!!1 - result!!2 where result = sort ([a, b, c])
is there a general way of doing this independent of the number of arguments?
Not really; at least it's not worth it. First off, this entire idea isn't very useful because lists are homogeneous: all elements must have the same type, so it only works for the rather unusual special case of functions which only take arguments of a single type.
Even then, the problem is that “number of arguments” isn't really a sensible concept in Haskell, because as Willem Van Onsem commented, all functions really only have one argument (further arguments are actually only given to the result of the first application, which has again function type).
That said, at least for a single argument- and final-result type, it is quite easy to pack any number of arguments into a list:
{-# LANGUAGE FlexibleInstances #-}
class UsingList f where
usingList :: ([Int] -> Int) -> f
instance UsingList Int where
usingList f = f []
instance UsingList r => UsingList (Int -> r) where
usingList f a = usingList (f . (a:))
foo :: Int -> Int -> Int -> Int
foo = usingList $ (\[α,β,γ] -> α + β - γ) . sort
It's also possible to make this work for any type of the arguments, using type families or a multi-param type class. What's not so simple though is to write it once and for all with variable type of the final result. The reason being, that would also have to handle a function as the type of final result. But then, that could also be intepreted as “we still need to add one more argument to the list”!
With all respect, I would disagree with #leftaroundabout's answer above. Something being
unusual is not a reason to shun it as unworthy.
It is correct that you would not be able to define a polymorphic variadic list constructor
without type annotations. However, we're not usually dealing with Haskell 98, where type
annotations were never required. With Dependent Haskell just around the corner, some
familiarity with non-trivial type annotations is becoming vital.
So, let's take a shot at this, disregarding worthiness considerations.
One way to define a function that does not seem to admit a single type is to make it a method of a
suitably constructed class. Many a trick involving type classes were devised by cunning
Haskellers, starting at least as early as 15 years ago. Even if we don't understand their
type wizardry in all its depth, we may still try our hand with a similar approach.
Let us first try to obtain a method for summing any number of Integers. That means repeatedly
applying a function like (+), with a uniform type such as a -> a -> a. Here's one way to do
it:
class Eval a where
eval :: Integer -> a
instance (Eval a) => Eval (Integer -> a) where
eval i = \y -> eval (i + y)
instance Eval Integer where
eval i = i
And this is the extract from repl:
λ eval 1 2 3 :: Integer
6
Notice that we can't do without explicit type annotation, because the very idea of our approach is
that an expression eval x1 ... xn may either be a function that waits for yet another argument,
or a final value.
One generalization now is to actually make a list of values. The science tells us that
we may derive any monoid from a list. Indeed, insofar as sum is a monoid, we may turn arguments to
a list, then sum it and obtain the same result as above.
Here's how we can go about turning arguments of our method to a list:
class Eval a where
eval2 :: [Integer] -> Integer -> a
instance (Eval a) => Eval (Integer -> a) where
eval2 is i = \j -> eval2 (i:is) j
instance Eval [Integer] where
eval2 is i = i:is
This is how it would work:
λ eval2 [] 1 2 3 4 5 :: [Integer]
[5,4,3,2,1]
Unfortunately, we have to make eval binary, rather than unary, because it now has to compose two
different things: a (possibly empty) list of values and the next value to put in. Notice how it's
similar to the usual foldr:
λ foldr (:) [] [1,2,3,4,5]
[1,2,3,4,5]
The next generalization we'd like to have is allowing arbitrary types inside the list. It's a bit
tricky, as we have to make Eval a 2-parameter type class:
class Eval a i where
eval2 :: [i] -> i -> a
instance (Eval a i) => Eval (i -> a) i where
eval2 is i = \j -> eval2 (i:is) j
instance Eval [i] i where
eval2 is i = i:is
It works as the previous with Integers, but it can also carry any other type, even a function:
(I'm sorry for the messy example. I had to show a function somehow.)
λ ($ 10) <$> (eval2 [] (+1) (subtract 2) (*3) (^4) :: [Integer -> Integer])
[10000,30,8,11]
So far so good: we can convert any number of arguments into a list. However, it will be hard to
compose this function with the one that would do useful work with the resulting list, because
composition only admits unary functions − with some trickery, binary ones, but in no way the
variadic. Seems like we'll have to define our own way to compose functions. That's how I see it:
class Ap a i r where
apply :: ([i] -> r) -> [i] -> i -> a
apply', ($...) :: ([i] -> r) -> i -> a
($...) = apply'
instance Ap a i r => Ap (i -> a) i r where
apply f xs x = \y -> apply f (x:xs) y
apply' f x = \y -> apply f [x] y
instance Ap r i r where
apply f xs x = f $ x:xs
apply' f x = f [x]
Now we can write our desired function as an application of a list-admitting function to any number
of arguments:
foo' :: (Num r, Ord r, Ap a r r) => r -> a
foo' = (g $...)
where f = (\result -> (result !! 0) + (result !! 1) - (result !! 2))
g = f . sort
You'll still have to type annotate it at every call site, like this:
λ foo' 4 5 10 :: Integer
-1
− But so far, that's the best I can do.
The more I study Haskell, the more I am certain that nothing is impossible.

Haskell - Maybe Either

-- | Convert a 'Maybe a' to an equivalent 'Either () a'. Should be inverse
-- to 'eitherUnitToMaybe'.
maybeToEitherUnit :: Maybe a -> Either () a
maybeToEitherUnit a = error "Not yet implemented: maybeToEitherUnit"
-- | Convert a 'Either () a' to an equivalent 'Maybe a'. Should be inverse
-- to 'maybeToEitherUnit'.
eitherUnitToMaybe :: Either () a -> Maybe a
eitherUnitToMaybe = error "Not yet implemented: eitherUnitToMaybe"
-- | Convert a pair of a 'Bool' and an 'a' to 'Either a a'. Should be inverse
-- to 'eitherToPairWithBool'.
pairWithBoolToEither :: (Bool,a) -> Either a a
pairWithBoolToEither = undefined -- What should I do here?
-- | Convert an 'Either a a' to a pair of a 'Bool' and an 'a'. Should be inverse
-- to 'pairWithBoolToEither'.
eitherToPairWithBool :: Either a a -> (Bool,a)
eitherToPairWithBool = undefined -- What should I do here?
-- | Convert a function from 'Bool' to 'a' to a pair of 'a's. Should be inverse
-- to 'pairToFunctionFromBool'.
functionFromBoolToPair :: (Bool -> a) -> (a,a)
functionFromBoolToPair = error "Not yet implemented: functionFromBoolToPair"
-- | Convert a pair of 'a's to a function from 'Bool' to 'a'. Should be inverse
-- to 'functionFromBoolToPair'.
pairToFunctionFromBool :: (a,a) -> (Bool -> a)
pairToFunctionFromBool = error "Not yet implemented: pairToFunctionFromBool"
I don't really know what to do. I know what maybe is, but I think I have a problem with either, because Either a a makes no sense in my mind. Either a b would be okay. This is either a or b but Either a a is a?!
I don't have any idea in general how to write these functions.
Given that I think this is homework, I'll not answer, but give important hints:
If you look for the definitions on hoogle (http://www.haskell.org/hoogle/)
you find
data Bool = True | False
data Either a b = Left a | Right b
This means that Bool can only be True or False, but that Either a b can be Left a or Right b.
which means your functions should look like
pairWithBoolToEither :: (Bool,a) -> Either a a
pairWithBoolToEither (True,a) = ....
pairWithBoolToEither (False,a) = ....
and
eitherToPairWithBool :: Either a a -> (Bool,a)
eitherToPairWithBool (Left a) = ....
eitherToPairWithBool (Right a) = ....
Comparing with Maybe
Maybe a is given by
data Maybe a = Just a | Nothing
so something of type Maybe Int could be Just 7 or Nothing.
Similarly, something of type Either Int Char could be Left 5 or Right 'c'.
Something of type Either Int Int could be Left 7 or Right 4.
So something with type Either Int Char is either an Int or a Char, but something of type Either Int Int is either an Int or an Int. You don't get to choose anything other than Int, but you'll know whether it was a Left or a Right.
Why you've been asked this/thinking behind it
If you have something of type Either a a, then the data (eg 5 in Left 5) is always of type a, and you've just tagged it with Left or Right. If you have something of type (Bool,a) the a-data (eg 5 in (True,5)) is always the same type, and you've paired it with False or True.
The maths word for two things which perhaps look different but actually have the same content is "isomorphic". Your instructor has asked you to write a pair of functions which show this isomorphism. Your answer will go down better if pairWithBoolToEither . eitherToPairWithBool and eitherToPairWithBool . pairWithBoolToEither do what id does, i.e. don't change anything. In fact, I've just spotted the comments in your question, where it says they should be inverses. In your write-up, you should show this by doing tests in ghci like
ghci> eitherToPairWithBool . pairWithBoolToEither $ (True,'h')
(True,'h')
and the other way round.
(In case you haven't seen it, $ is defined by f $ x = f x but $ has really low precedence (infixr 0 $), so f . g $ x is (f . g) $ x which is just (f . g) x and . is function composition, so (f.g) x = f (g x). That was a lot of explanation to save one pair of brackets!)
Functions that take or return functions
This can be a bit mind blowing at first when you're not used to it.
functionFromBoolToPair :: (Bool -> a) -> (a,a)
The only thing you can pattern match a function with is just a variable like f, so we'll need to do something like
functionFromBoolToPair f = ...
but what can we do with that f? Well, the easiest thing to do with a function you're given is to apply it to a value. What value(s) can we use f on? Well f :: (Bool -> a) so it takes a Bool and gives you an a, so we can either do f True or f False, and they'll give us two (probably different) values of type a. Now that's handy, because we needed to a values, didn't we?
Next have a look at
pairToFunctionFromBool :: (a,a) -> (Bool -> a)
The pattern match we can do for the type (a,a) is something like (x,y) so we'll need
pairToFunctionFromBool (x,y) = ....
but how can we return a function (Bool -> a) on the right hand side?
There are two ways I think you'll find easiest. One is to notice that since -> is right associative anyway, the type (a,a) -> (Bool -> a) is the same as (a,a) -> Bool -> a so we can actually move the arguments for the function we want to return to before the = sign, like this:
pairToFunctionFromBool (x,y) True = ....
pairToFunctionFromBool (x,y) False = ....
Another way, which feels perhaps a little easier, would to make a let or where clause to define a function called something like f, where f :: Bool -> a< a bit like:
pairToFunctionFromBool (x,y) = f where
f True = ....
f False = ....
Have fun. Mess around.
Perhaps it's useful to note that Either a b is also called the coproduct, or sum, of the types a and b. Indeed it is now common to use
type (+) = Either
You can then write Either a b as a + b.
eitherToPairWithBool :: (a+a) -> (Bool,a)
Now common sense would dictate that we rewrite a + a as something like 2 ⋅ a. Believe it or not, that is exactly the meaning of the tuple type you're transforming to!
To explain: algebraic data types can roughly be seen as "counting1 the number of possible constructions". So
data Bool = True | False
has two constructors. So sort of (this is not valid Haskell!)
type 2 = Bool
Tuples allow all the combinations of constructors from each argument. So for instance in (Bool, Bool), we have the values
(False,False)
(False,True )
(True, False)
(True, True )
You've guessed it: tuples are also called products. So the type (Bool, a) is basically 2 ⋅ a: for every value x :: a, we can create both the (False, x) tuple and the (True, x) tuple, alltogether twice as many as there are x values.
Much the same thing for Either a a: we always have both Left x and Right x as a possible value.
All your functions with "arithmetic types":
type OnePlus = Maybe
maybeToEitherUnit :: OnePlus a -> () + a
eitherUnitToMaybe :: () + a -> OnePlus a
pairWithBoolToEither :: 2 ⋅ a -> a + a
eitherToPairWithBool :: a + a -> 2 ⋅ a
functionFromBoolToPair :: a² -> a⋅a
pairToFunctionFromBool :: a⋅a -> a²
1For pretty much any interesting type there are actually infinitely many possible values, still this kind of naïve arithmetic gets you surprisingly far.
Either a a makes no sense in my mind.
Yes it does. Try to figure out the difference between type a and Either a a. Either is a disjoint union. Once you understand the difference between a and Either a a, your homework should be easy in conjunction with AndrewC's answer.
Note that Either a b means quite literally that a value of such a type can be either an a, or an a. It sounds like you have actually grasped this concept, but the piece you're missing is that the Either type differentiates between values constructed with Left and those constructed with Right.
For the first part, the idea is that Maybe is either Just a thing or Nothing -- Nothing corresponds to () because both are "in essence" data types with only one possible value.
The idea behind converting (Bool, a) pairs to Either a a pairs might seem a little trickier, but just think about the correspondence between True and False and Left and Right.
As for converting functions of type (Bool -> a) to (a, a) pairs, here's a hint: Consider the fact that Bool can only have two types, and write down what that initial function argument might look like.
Hopefully those hints help you to get started.

What are the alternatives to prelude's iterate if the "output" values are not the same as those being iterated on?

I have come across a pattern where, I start with a seed value x and at each step generate a new seed value and a value to be output. My desired final result is a list of the output values. This can be represented by the following function:
my_iter :: (a -> (a, b)) -> a -> [b]
my_iter f x = y : my_iter f x'
where (x',y) = f x
And a contrived example of using this would be generating the Fibonacci numbers:
fibs:: [Integer]
fibs = my_iter (\(a,b) -> let c = a+b in ((b, c), c)) (0,1)
-- [1, 2, 3, 5, 8...
My problem is that I have this feeling that there is very likely a more idiomatic way to do this kind of stuff. What are the idiomatic alternatives to my function?
The only ones I can think of right now involve iterate from the Prelude, but they have some shortcomings.
One way is to iterate first and map after
my_iter f x = map f2 $ iterate f1 x
where f1 = fst . f
f2 = snd . f
However, this can look ugly if there is no natural way to split f into the separate f1 and f2 functions. (In the contrived Fibonacci case this is easy to do, but there are some situations where the generated value is not an "independent" function of the seed so its not so simple to split things)
The other way is to tuple the "output" values together with the seeds, and use a separate step to separate them (kind of like the "Schwartzian transform" for sorting things):
my_iter f x = map snd . tail $ iterate (f.fst) (x, undefined)
But this seems wierd, since we have to remember to ignore the generated values in order to get to the seed (the (f.fst) bit) and add we need an "undefined" value for the first, dummy generated value.
As already noted, the function you want is unfoldr. As the name suggests, it's the opposite of foldr, but it might be instructive to see exactly why that's true. Here's the type of foldr:
(a -> b -> b) -> b -> [a] -> b
The first two arguments are ways of obtaining something of type b, and correspond to the two data constructors for lists:
[] :: [a]
(:) :: a -> [a] -> [a]
...where each occurrence of [a] is replaced by b. Noting that the [] case produces a b with no input, we can consolidate the two as a function taking Maybe (a, b) as input.
(Maybe (a, b) -> b) -> ([a] -> b)
The extra parentheses show that this is essentially a function that turns one kind of transformation into another.
Now, simply reverse the direction of both transformations:
(b -> Maybe (a, b)) -> (b -> [a])
The result is exactly the type of unfoldr.
The underlying idea this demonstrates can be applied similarly to other recursive data types, as well.
The standard function you're looking for is called unfoldr.
Hoogle is a very useful tool in this case, since it doesn't only support searching functions by name, but also by type.
In your case, you came up with the desired type (a -> (a, b)) -> a -> [b]. Entering it yields no results - hmm.
Well, maybe there's a standard function with a slightly different syntax. For example, the standard function might have its arguments flipped; let's look for something with (a -> (a, b)) in its type signature somewhere. This time we're lucky as there are plenty of results, but all of them are in exotic packages and none of them seems very helpful.
Maybe the second part of your function is a better match, you want to generate a list out of some initial element after all - so type in a -> [b] and hit search. First result: unfoldr - bingo!
Another possibility is iterateM in State monad:
iterateM :: Monad m => m a -> m [a]
iterateM = sequence . repeat
It is not in standard library but it's easy to build.
So your my_iter is
evalState . sequence . repeat :: State s a -> s -> [a]

Creating a list type using functions

For a silly challenge I am trying to implement a list type using as little of the prelude as possible and without using any custom types (the data keyword).
I can construct an modify a list using tuples like so:
import Prelude (Int(..), Num(..), Eq(..))
cons x = (x, ())
prepend x xs = (x, xs)
head (x, _) = x
tail (_, x) = x
at xs n = if n == 0 then xs else at (tail xs) (n-1)
I cannot think of how to write an at (!!) function. Is this even possible in a static language?
If it is possible could you try to nudge me in the right direction without telling me the answer.
There is a standard trick known as Church encoding that makes this easy. Here's a generic example to get you started:
data Foo = A Int Bool | B String
fooValue1 = A 3 False
fooValue2 = B "hello!"
Now, a function that wants to use this piece of data must know what to do with each of the constructors. So, assuming it wants to produce some result of type r, it must at the very least have two functions, one of type Int -> Bool -> r (to handle the A constructor), and the other of type String -> r (to handle the B constructor). In fact, we could write the type that way instead:
type Foo r = (Int -> Bool -> r) -> (String -> r) -> r
You should read the type Foo r here as saying "a function that consumes a Foo and produces an r". The type itself "stores" a Foo inside a closure -- so that it will effectively apply one or the other of its arguments to the value it closed over. Using this idea, we can rewrite fooValue1 and fooValue2:
fooValue1 = \consumeA consumeB -> consumeA 3 False
fooValue2 = \consumeA consumeB -> consumeB "hello!"
Now, let's try applying this trick to real lists (though not using Haskell's fancy syntax sugar).
data List a = Nil | Cons a (List a)
Following the same format as before, consuming a list like this involves either giving a value of type r (in case the constructor was Nil) or telling what to do with an a and another List a, so. At first, this seems problematic, since:
type List a r = (r) -> (a -> List a -> r) -> r
isn't really a good type (it's recursive!). But we can instead demand that we first reduce all the recursive arguments to r first... then we can adjust this type to make something more reasonable.
type List a r = (r) -> (a -> r -> r) -> r
(Again, we should read the type List a r as being "a thing that consumes a list of as and produces an r".)
There's one final trick that's necessary. What we would like to do is to enforce the requirement that the r that our List a r returns is actually constructed from the arguments we pass. That's a little abstract, so let's give an example of a bad value that happens to have type List a r, but which we'd like to rule out.
badList = \consumeNil consumeCons -> False
Now, badList has type List a Bool, but it's not really a function that consumes a list and produces a Bool, since in some sense there's no list being consumed. We can rule this out by demanding that the type work for any r, no matter what the user wants r to be:
type List a = forall r. (r) -> (a -> r -> r) -> r
This enforces the idea that the only way to get an r that gets us off the ground is to use the (user-supplied) consumeNil function. Can you see how to make this same refinement for our original Foo type?
If it is possible could you try and nudge me in the right direction without telling me the answer.
It's possible, in more than one way. But your main problem here is that you've not implemented lists. You've implemented fixed-size vectors whose length is encoded in the type.
Compare the types from adding an element to the head of a list vs. your implementation:
(:) :: a -> [a] -> [a]
prepend :: a -> b -> (a, b)
To construct an equivalent of the built-in list type, you'd need a function like prepend with a type resembling a -> b -> b. And if you want your lists to be parameterized by element type in a straightforward way, you need the type to further resemble a -> f a -> f a.
Is this even possible in a static language?
You're also on to something here, in that the encoding you're using works fine in something like Scheme. Languages with "dynamic" systems can be regarded as having a single static type with implicit conversions and metadata attached, which obviously solves the type mismatch problem in a very extreme way!
I cannot think of how to write an at (!!) function.
Recalling that your "lists" actually encode their length in their type, it should be easy to see why it's difficult to write functions that do anything other than increment/decrement the length. You can actually do this, but it requires elaborate encoding and more advanced type system features. A hint in this direction is that you'll need to use type-level numbers as well. You'd probably enjoy doing this as an exercise as well, but it's much more advanced than encoding lists.
Solution A - nested tuples:
Your lists are really nested tuples - for example, they can hold items of different types, and their type reveals their length.
It is possible to write indexing-like function for nested tuples, but it is ugly, and it won't correspond to Prelude's lists. Something like this:
class List a b where ...
instance List () b where ...
instance List a b => List (b,a) b where ...
Solution B - use data
I recommend using data construct. Tuples are internally something like this:
data (,) a b = Pair a b
so you aren't avoiding data. The division between "custom types" and "primitive types" is rather artificial in Haskell, as opposed to C.
Solution C - use newtype:
If you are fine with newtype but not data:
newtype List a = List (Maybe (a, List a))
Solution D - rank-2-types:
Use rank-2-types:
type List a = forall b. b -> (a -> b -> b) -> b
list :: List Int
list = \n c -> c 1 (c 2 n) -- [1,2]
and write functions for them. I think this is closest to your goal. Google for "Church encoding" if you need more hints.
Let's set aside at, and just think about your first four functions for the moment. You haven't given them type signatures, so let's look at those; they'll make things much clearer. The types are
cons :: a -> (a, ())
prepend :: a -> b -> (a, b)
head :: (a, b) -> a
tail :: (a, b) -> b
Hmmm. Compare these to the types of the corresponding Prelude functions1:
return :: a -> [a]
(:) :: a -> [a] -> [a]
head :: [a] -> a
tail :: [a] -> [a]
The big difference is that, in your code, there's nothing that corresponds to the list type, []. What would such a type be? Well, let's compare, function by function.
cons/return: here, (a,()) corresponds to [a]
prepend/(:): here, both b and (a,b) correspond to [a]
head: here, (a,b) corresponds to [a]
tail: here, (a,b) corresponds to [a]
It's clear, then, that what you're trying to say is that a list is a pair. And prepend indicates that you then expect the tail of the list to be another list. So what would that make the list type? You'd want to write type List a = (a,List a) (although this would leave out (), your empty list, but I'll get to that later), but you can't do this—type synonyms can't be recursive. After all, think about what the type of at/!! would be. In the prelude, you have (!!) :: [a] -> Int -> a. Here, you might try at :: (a,b) -> Int -> a, but this won't work; you have no way to convert a b into an a. So you really ought to have at :: (a,(a,b)) -> Int -> a, but of course this won't work either. You'll never be able to work with the structure of the list (neatly), because you'd need an infinite type. Now, you might argue that your type does stop, because () will finish a list. But then you run into a related problem: now, a length-zero list has type (), a length-one list has type (a,()), a length-two list has type (a,(a,())), etc. This is the problem: there is no single "list type" in your implementation, and so at can't have a well-typed first parameter.
You have hit on something, though; consider the definition of lists:
data List a = []
| a : [a]
Here, [] :: [a], and (:) :: a -> [a] -> [a]. In other words, a list is isomorphic to something which is either a singleton value, or a pair of a value and a list:
newtype List' a = List' (Either () (a,List' a))
You were trying to use the same trick without creating a type, but it's this creation of a new type which allows you to get the recursion. And it's exactly your missing recursion which allows lists to have a single type.
1: On a related note, cons should be called something like singleton, and prepend should be cons, but that's not important right now.
You can implement the datatype List a as a pair (f, n) where f :: Nat -> a and n :: Nat, where n is the length of the list:
type List a = (Int -> a, Int)
Implementing the empty list, the list operations cons, head, tail, and null, and a function convert :: List a -> [a] is left as an easy exercise.
(Disclaimer: stole this from Bird's Introduction to Functional Programming in Haskell.)
Of course, you could represent tuples via functions as well. And then True and False and the natural numbers ...

how to write numbers in lambda using ghci

I am new to Haskell, using Ghci.
I have a function, called three, that I want to write as
let three = \x->(\y->(x(x(x y))))
OK, this works, but when I try
three (2+) 4
It does not work. Instead, I get some "cannot construct infinite type" error.
Please help me.
ghci> let three = \x->(\y->(x(x(x y))))
ghci> three (2+) 4
10
ghci> three return "deconstructivist"
<interactive>:1:6:
Occurs check: cannot construct the infinite type: t = m t
Expected type: t
Inferred type: m t
In the first argument of 'three', namely 'return'
In the expression: three return "deconstructivist"
ghci> :t three
three :: (t -> t) -> t -> t
ghci> :t return
return :: (Monad m) => a -> m a
The example you supplied of three (2+) 4, works! Better check that the examples you provide actually reproduce your problem.
As for with a different example, like the one above with return, the thing is that return results in a different type than the one given. If the type was the same, it would be infinite (and of kind * -> * -> * -> ...), which Haskell does not support.
The example you give does work. Let's explain why:
three f = f . f . f
-- so...
three :: (a -> a) -> a -> a
The function needs to have type a -> a because it will receive it's own argument, which requires a type. (2+) has type Num a => a -> a, so three (2+) 4 will work just fine.
However, when you pass a function like return of type Monad m => a -> m a, which returns a different type, it will not match the (a -> a) requirement we set out. This is where and when your function will fail.
While you're at it, try making a function like doTimes with type Integer -> (a -> a) -> a -> a which does the given function the given number of times - it's a good next step after making this function.

Resources