Thread id in Qt - multithreading

How to print the thread id using qDebug() on windows environment of Qt.

I'm assuming you want the thread id of the currently executing thread (and not the thread id of a specific QThread object):
qDebug() << QThread::currentThreadId();
Things to consider: The method returns a platform specific id (check the docs). In windows you cannot use this id with Win32 API functions since it returns a pseudo id and not the real thread id.
If your application will only run in Windows and you need to do something meaningful with the thread id it would probably be best if you used GetCurrentThreadId().

On windows, applications normally "detatch" from the command line when you execute them. If you add
win32:CONFIG+=console
your applications will block the command prompt, and print the qDebug statements.

Since a QThread's underlying implementation is pthreads, you can use (I"m assuming you want a usable ID)
pthread_t = pthread_self();
from within the thread that is executing.
The value returned from QThread::currentThreadId() is not portable.

Related

get pthread_t from thread id

I am unable to find a function to convert a thread id (pid_t) into a pthread_t which would allow me to call pthread_cancel() or pthread_kill().
Even if pthreads doesn't provide one is there a Linux specific function?
I don't think such a function exists but I would be happy to be corrected.
Background
I am well aware that it is usually preferable to have threads manage their own lifetimes via condition variables and the like.
This use is for testing purposes. I am trying to find a way to test how an application behaves when one of its threads 'dies'. So I'm really looking for a way to kill a thread. Using syscall(tgkill()) kills the process, so instead I provided a means for a tester to give the process the id of the thread to kill. I now need to turn that id into a pthread_t so that I can then:
use pthread_kill(tid,0) to check for its existence followed by
calling pthread_kill() or pthread_cancel() as appropriate.
This is probably taking testing to an unnecessary extreme. If I really want to do that some kind of mock pthreads implementation might be better.
Indeed if you really want robust isolation you are typically better off using processes rather than threads.
I don't think such a function exists but I would be happy to be corrected.
As a workaround I can create a table mapping &pthread_t to pid_t and ensure that I always invoke pthread_create() via a wrapper that adds an entry to this table. This works very well and allows me to convert an OS thread id to a pthread_t which I can then terminate using pthread_cancel(). Here is a snippet of the mechanism:
typedef void* (*threadFunc)(void*);
static void* start_thread(void* arg)
{
threadFunc threadRoutine = routine_to_start;
record_thread_start(pthread_self(),syscall(SYS_gettid));
routine_to_start = NULL; //let creating thread know its safe to continue
return threadRoutine(arg);
}
Sensible conversion requires there to be a 1:1 mapping between pthread_t and pid_t tid, which is the case with NPTL, but hasn't always been the case, and won't be the case on every pthread platform. That said...
Two options:
A) override the actual pthread_create, using LD_PRELOAD and dlsym, and keep track of each pthread_t and their corresponding pid_t there. To get the thread pid_t you can either take advantage of the pthread private headers to de-opaque the pthread_t and access the pid_t inside there, or if you want to stick to documented APIs pthread_sigqueue each pthread_t thread as it is created and have a sigaction signal handler call gettid and pass you back the thread pid_t, with appropriate synchronisation between your new pthread_create and the signal handler[1].
B) You can read the all of the thread pid_t from /proc/<process pid_t>/task/. Then use the SYS_rt_tgsigqueueinfo[2] syscall to implement a new function thread_sigqueue, a pid_t variant of pthread_sigqueue so that you can signal the pid_t thread, and from the sigaction signal handler call pthread_self passing out the value with suitable synchronization, etc.
Notes:
1 - I think it's worth writing 2 executeOnThread variants (one for pthread_t and one for pid_t style thread ids) that take a std::function<void()> (for C++), or a void(*)(void*) function pointer and void* parameter (for C), and SIGUSR1 that thread to execute the passed function in a sigaction that you also setup to perform relevant synchronization with the calling thread. It's handy to be able to use the thread-dependent APIs like pthread_self, gettid, backtrace, getrusage, etc. without devising a custom execution scheme each time.
2 - SYS_rt_tgsigqueueinfo is a low level syscall meant for implementing sigqueue/pthread_sigqueue, rather than application use, but is still a documented API, and we're using it to implement another variant of sigqueue, so fair game IMHO.

Boost asio with Qt

I am trying to use boost::asio async client example with a simple Qt GUI like:
A little snippet from my app:
The button click SLOT:
void RestWidget::restGetCall()
{
networkService ntwkSer("www.boost.org","80");
connect(&ntwkSer, SIGNAL(responseReady(std::string)), this, SLOT(showResponse(std::string)));
ntwkSer.get("/LICENSE_1_0.txt");
}
The networkService class is just a wrapper of the above linked boost sample code.Its derived from QObject class for signal,slot mechanism.
void networkService::get(const std::string & path)
{
// boost::thread (boost::bind(&networkService::networkCall,this,path));//this gives me sigabrt
networkCall(path);//this works fine, and i get output as pictured above.
}
void networkService::networkCall(const std::string path)
{
tcp::resolver::query query(host_, port_);//also these host,port fields come out to be invalid/garbage.
//tcp::resolver::query query("www.boost.org","80");//still doesnt resolve the SIGABRT
resolver_.async_resolve(query,
boost::bind(&networkService::handle_resolve, this,
boost::asio::placeholders::error,
boost::asio::placeholders::iterator,
path));
io_service.run();
}
The problem, is when i run the io_service.run() from the boost::thread. i get SIGABRT.
also he host_,port_ networkService wrapper class fields inside the networkService::networkCall(path) function on debugging come out to be invalid, which get saved while constructing:
networkService ntwkSer("www.boost.org","80");
The obvious reason for boost::thread is to make GUI non-blocking,since io_service() has its own eventloop. My intention is to run boost::asio async calls in a seperate boost thread, and notify the GUI thread with QT's Q_OBJECT signal slot mechanism.
I don't get the reason of SIGABRT and also why could the field values of host_ and port_ become invalid once i start using boost::thread.
PS: This same setup, behaves correctly with boost::thread from a similar commandline application (no Qt GUI code), i.e when the networkService class is not hacked for Qt signal/slot to notify the main GUI thread. Here, i use the boost::asio's response from within the boost::thread.
Edit:
as per responses to my question, i tried this... i disabled Q_OBJECT signal/slot and QObject derivation of the networkservice class, to be sure MOC isnt messing things up.. but still, the issue prevails, i get access violation on windows vs sigabrt on linux. The issue of the networkservice object's fields getting corrupted is also present, eventually getting access violation.
In effect no change in behaviour.
before launching thread:
from inside thread
access violation on continue...
So, even without MOC , the issue is still there.
Edit 2:
Im sorry for bothering.. i did a huge mistake, of using a local networkService object from within the boost::thread, which got scoped out when the thread actually ran!
It's difficult to get the asio io_service.run() function to "play well" with the Qt event loop.
It's easier to use a Qt slot that calls io_service::poll() or io_service::poll_one() and then connect that slot to a QTimerEvent.
And it's even easier to use QNetworkAccessManager instead of asio see Qt Client Example
The problem is that with qt only one thread is allowed to manipulate the gui in qt. That is the one calling QApplication::exec. This is done to remove complexity for the users of qt and due to that QApplication / message loop being a singleton. That being said there is some magic going on in qt with threads. All QObjects are assigned a thread. By default the one on which they are created. When a signal slot connection is made it is determined how to actually dispatch the call. If the objects belong to the same thread a signal is dispatched by directly / synchronous invoking the slot. If the objects are assigned to distinguished threads a message is send from one thread to another to invoke the slot on the thread that is assigned to the object where the slot lives. This is what you actually need here.
The problem with your code is that both of your QObjects are created on the same thread. They are therefore assigned the same thread. So the slot which manipulates the GUI is called directly from your worker thread and remember this is prohibited! Since your worker is not the one calling QApplication::exec. To override the automatics and convince to correctly do the thread switch when calling the slot you must use Qt::QueuedConnection when doing the connect.
connect(&ntwkSer, SIGNAL(responseReady(std::string)), this, SLOT(showResponse(std::string)), Qt::QueuedConnection);

What is the reason for QProcess error status 5?

i have multiple threads running the following QProcess. Randomly they fail with error state 5. The Qt docs do not give any more details. Has anyone a clue what that error could come from? Thank you very much.
extCmd = new QProcess(this);
QString cmd = "/usr/bin/php";
QStringList argStr;
argStr << "/bin/sleep" << "10"; // changed to ever working command
extCmd->start(cmd, args);
bool suc = extCmd->waitForFinished(-1);
if (!suc) {
qDebug() << "finishing failed error="
<< extCmd.error()
<< extCmd.errorString();
}
Gives me the output:
finishing failed error= 5 "Unknown error"
Tangential to your problem is the fact that you should not be starting a thread per each process. A QProcess emits a finished(int code, QProcess::ExitStatus status) signal when it's done. It will also emit started() and error() upon successful and unsuccessful startup, respectively. Connect all those three signals to a slot in a QObject, then start the process, and deal with the results in the slots. You won't need any extra threads.
If you get a started() signal, then you can be sure that the process's file name was correct, and the process was started. Whatever exit code you get from finished(int) is then indicative of what the process did, perhaps in response to potentially invalid arguments you might have passed to it. If you get a error() signal, the process has failed to start because you gave a wrong filename to QProcess::start(), or you don't have correct permissions.
You should not be writing synchronous code where things happen asynchronously. Synchronous code is code that blocks for a particular thing to happen, like calling waitForCmdFinished. I wish that there was a Qt configuration flag that disables all those leftover synchronous blocking APIs, just like there's a flag to disable/enable Qt 3 support APIs. The mere availability of those blocking APIs promotes horrible hacks like the code above. Those APIs should be disabled by default IMHO. Just as there should be a test for moving QThread and derived classes to another thread. It's also a sign of bad design in every example of publicly available code I could find, and I did a rather thorough search to convince myself I wasn't crazy or something.
The only reasonable use I recall for a waitxxx method in Qt is the wait for a QThread to finish. Even then, this should be only called from within the ~QThread, so as to prevent the QThread from being destroyed with the tread still running.

What are working threads?

What are this working threads? How to implement them? And when to use them. I ask this because many people mention them but I dont find an the net some example of them. Or is just a saying for creating threads? Thanks.
Working threads isn't itself a meaningful term in the thread world.
I guess you mean to say," What are worker threads" ?
In that case, let me tell you that a worker thread is commonly used to handle background tasks that the user shouldn't have to wait for to continue using your application.
e.g Recalculation and background printing.
For implementing the worker thread, the controlling function should be defined which defines the thread. When this function is entered, the thread starts, and when it exits, the thread terminates. This function should have the following prototype : More Information
UINT MyControllingFunction( LPVOID pParam );
A short snippet to implement the controlling function of worker thread,
UINT MyThreadProc( LPVOID pParam )
{
CMyObject* pObject = (CMyObject*)pParam;
if (pObject == NULL ||
!pObject->IsKindOf(RUNTIME_CLASS(CMyObject)))
return 1; // if pObject is not valid
// do something with 'pObject'
return 0; // thread completed successfully
}
// inside a different function in the program
.
.
.
pNewObject = new CMyObject;
AfxBeginThread(MyThreadProc, pNewObject);
.
.
.
"Worker thread" is a generic term for a thread which performs some task independent of some primary thread. Depending on usage, it may simply mean any thread other than the primary UI thread, or it may mean a thread which performs a well-scoped task (i.e. a 'job' rather than a continuous operation which lasts the lifetime of the application).
For example, you might spawn a worker thread to retrieve a file from a remote computer over a network. It might send progress updates the application's main thread.
I use a worker, or background thread, any time that I want to perform a lengthy task without tying up my user interface. Threads often allow me to simplify my code by making a continuous series of statements, rather than a convoluted, non-blocking architecture.

Get the TThread object for the currently executing thread?

I want a function like GetCurrentThread which returns a TThread object of the current executing thread. I know there is a Win32 API call GetCurrentThread, but it returns the thread Id. If there is a possibility to get TThread object from that ID that's also fine.
From your own answer, it seems maybe you only want to "determine if running in the main thread or not", in which case you can just use
if Windows.GetCurrentThreadId() = System.MainThreadID then
// ...
Although this won't work from a DLL created with Delphi if it was loaded by a worker thread.
The latest version of Delphi, Delphi 2009, has a CurrentThread class property on the TThread class.
This will return the proper Delphi thread object if it's a native thread. If the thread is an "alien" thread, i.e. created using some other mechanism or on a callback from a third party thread, then it will create a wrapper thread around the thread handle.
I'm using my own TThread descendent that registers itself in a global list, protected with a lock.
That way, a method in this descendent can walk the list and get a TThread give an ID.
Answering my own question. I guess it is not possible to get TThread object from ID. It is possible by using a global variable. Then comparing its handle and current thread id, one can determine if running in the main thread or not.
Wouldn't the current executing thread be the one you're trying to run a function from?
You could store the pointer of the TThread instance in the current thread's context via the TlsSetValue API call and then retrieve it using TlsGetValue. However, note that this will only work if you're trying to retrieve/store the TThread instance of the current thread.

Resources