I'm using RSA to encrypt communication between a server and a client.
Lets say we have 2 Asymetric keys, key 1 and key2.
The server has key1 (Private) from the start and the client has the key1(public)
So here is the scenario:
the client generates key2
client connects to the server
sending key2(public) encrypted with key1(public)
from now on the server will send all data encrypted with the key2(public)
the client sends some random data to the server
the server sends back the same data hashed
the client verifies that the data is right
As far as I can see this should prevent a man-in-the-middle attack, or am I missing something?
At point 7 the client should know if someone is trying to give the server the wrong key to encrypt with, as no one else but the server can decrypt key2(public).
If there is anything that can be done to improve the security please tell me.
The best thing you can do to improve the security is to use an existing design and not try to reinvent the wheel. I'm not saying that what you've done is necessarily wrong, but just that many people much smarter than you and me have spent a lot of time thinking about this problem. Use TLS instead.
As long as key1 (private) has not been intercepted somehow by a third-party, your scenario looks secure.
I think I saw this somewhere in a paper actually. In it, Alice gave Bob an unlocked box (key 1 public), then Bob put a bunch of his own boxes (key 2 public) in it, locks it and sends it back to Alice. Alice then opens the box(key 1 private), and now she can securely seal the boxes that Bob just gave her.
Despite the box analogy, that's essentially what you're doing, so I'd say its secure.
I agree, just use TLS.
Also, what value do steps 5 through 7 provide? A MITM wanting to do an attack that would work after steps 1-4 (e.g. DoS of some sort by passing n transactions through and then stopping, forcing a retry from the start) could do so just as well after 5-7. What do they add?
-- MarkusQ
No, this protocol is not safe.
A man-in-the-middle can intercept the data sent by the client and send whatever it wants to the server, since you haven't specified any mechanism for the server to authenticate the client or verify the integrity of messages it receives.
Sure, you could doctor up your protocol to fix these glaring problems, but there would be others. If you ever fix them all, you'd have something that maps to TLS or SSH, so why not just start there?
#Petoj—the problem I was focusing on was that of the server trusting the messages it receives; your proposal doesn't provide any security there. However, if you are worried about confidentiality, you still have a problem, because the MITM could pass messages back and forth unaltered until he sees what wants to find because you don't have any privacy on the client messages.
Your proposal seems to be aimed at ensuring the integrity of messages from the client. You've developed the protocol to the point where the client can't distinguish between an attack and a network failure. Rather than trying to help the client determine whether the server acted on a tampered message, allow the server to verify the integrity of the message before acting on it.
I will agree with Greg that you are reinventing the wheel. What you are essentially describing is some basic form of key exchange. Incidentally, in order to ensure that it is secure against man-in-the-middle attacks you must also be certain of the server's identity, i.e. ensure that the client can know with certainty that what it believes to be public(key1) really is the server's and not the man-in-the-middle's (e.g. using a CA or having the server's public(key1) in secure storage on the client side.)
Moreover, there are additional considerations you must be aware from a systems standpoint, such as:
asymmetric key encryption is slower than symmetric key encryption, which is one of the reasons why existing solutions such as TLS will use asymmetric key encryption only to negotiate a temporary symmetric key, which is then used for channel encryption.
if traffic analysis by a third-party succeeds in cracking a temporary symmetric key, you have not compromised you asymmetric key pair. You are encouraged to re-negotiate the temporary key relatively often for this reason. Arguably, generating a new key2 in your scenario would mitigate this aspect.
Related
I’m trying to implement a message level encryption. Here is the current situation:
We have a mobile app client connects to server via oneway certificate https and we have username/password authentication and secure token for subsequent client to server invocations. So intention of message level encryption is not try to prevent 3rd part sniffing information or stealing client identity, instead to prevent the client user him/her self to something like,
1) Inspect and try to understand server - client protocol
2) Forgery request with other application than our app client
The initial idea is to use symmetric algorithm (DES, AES, or some simpler algorithm, as long as it could not be simply cracked by statistical or mathematical method without knowing the key). And the key is generated from a hash (SHA etc) from a string concatenated from a salt pre-agreed between client and server, and some information server tell client in non-encrypted content (for instance, the first call from client to server happens in non-encrypted context, and server returns a timestamp to client and also remember it for later key generating).
Does this do what I want to do for 1&2? And what is the major vulnerability if any?
There is no "secure" solution to what you try to achieve as long as you publish your software, because any key you use for the message level encryption will have to reach your software somehow. Either it is compiled into it, then a dedicated attacker can read it out of the binary, or it is transferred to the running software using the network, then the attacker can emulate the protocol your software is using to get the key.
The best you can hope for is to make it difficult for a reverse engineer to get to the key. That means you could assemble it in such a way that no complete piece of it can be found in the binary. But still if someone attaches a debugger at runtime she could still read it out of a variable trivially. In the end it remains an arms race between you and the reverse engineer.
I'm working on a network program and I don't want anyone to know what kind of information is being passed when they sniff the network. Would using TLS achieve this? My main reason is that I want to keep the protocol I'm using to myself for now. If not please tell me if there is anything that can achieve my goal.
It depends on a lot of things, e.g. what your exact threat model is, and how much information leakage you can tolerate.
For TLS to provide adequate protection, these assumptions must be true:
Obviously, you should use a correct implementation, otherwise, if for instance, you are using SecureTransport from iOS 7.0.4, all bets are off.
You should enforce a minimum version requirement and only support secure ciphersuites. If you allow downgrade to SSLv2, you are setting yourself up for problems.
You check for validity of the server public key. You'd be surprised how many client apps skip this.
You use client certificates to authenticate the client, as well as the server, otherwise, it is possible to write a phony client that talks to your TLS server and reverse engineer your protocol. (You can also authenticate the client early in the protocol lifecycle using other means, but that part of your protocol would not be safe).
You keep the private keys secure.
(If you are using X509 certificates and trust chains:) Certificate authorities that you trust do what they are supposed to do, i.e. not sign certificates in your name for others.
You will still leak some packet length and timing information that you hope would not be complete enough for the reverse engineer.
The attacker does not control your client or server or have access to the binaries on any side. If, like an iPhone app, you are giving away the client binary, you have already lost.
Your higher level protocol cannot be tricked into say, redirecting to another server blindly, or lose its mind and do some other crazy thing when the client secure channel is interrupted. This can be hard to notice at times and depends on many other factors.
Something else I have probably missed here.
Would TLS prevent others reverse engineer my protocol?
Probably not. Pentesters do it all the time. They use something like Burp Suite to proxy the connection and watch all the web requests.
If not please tell me if there is anything that can achieve my goal.
Common practice is: if you don't want it stolen, copied, pilfered, abused, etc, then you don't put it on a client. So all sensitive code and data goes on a server you control. Since the client gets to see the request, you have to remove all sensitive information from it.
I have a client-server game, where the client connects to a server and stays connected during the game (approx 5-60 min).
I want new clients to be able to register securely, as well as allowing existing clients to authenticate with no worries that the login credentials are exposed.
The thing is that for performance reasons it would be best to stick with a simple and cheap encryption like RC4 for the game session, but a symmetric key does not make it easy to secure the registration procedure.
Since I will want to keep a separate login server anyway, my idea is like this:
Client sends a HTTPS request to the login server with credentials (or registration information)
The login server collects the user information, and generates a temporary RC4 session encryption key
The user information + RC4 session + timestamp + digest (I can rely on both servers to be synchronized timewise) with a secret symmetric key, shared between game server and login server.
The packaged data + RC4 session encryption key + ip address to the game server is sent as a reply to the HTTPS request to the client.
The client opens a connection to the game server, sends an initial unencrypted hello message with the encrypted user information as a payload.
The game server unpacks the data packaged in (3). It now knows the user and the RC4 encryption key it is supposed to use.
If the timestamp indicates that the login credentials has expired, an error is returned to the client (who is then to retrieve new information). If the decrypted user data cannot be verified with the digest a different error is returned.
If everything checks ok, the server sends an unencrypted LOGIN_OK, and the RC4 encrypted communication starts.
Possible security concerns:
The game server 100% trusts the user info it has decrypted. This makes the servers completely decoupled which is nice, but if the key is compromised, users could completely fake their user info. This could be alleviated somewhat by rotating these keys, so that every day or month has a new key. Both game and login servers could get this from a third server that manages their keys. It might be overkill since: a) in case of a break-in where source code is exposed on the servers, they can be restarted with a new key b) a good enough key + encryption should make brute force attacks hard (suggestions on algorithm?)
RC4 isn't the most secure algorithm, but I make sure to throw away the first 512 bytes or so and each key is only valid for a limited time, e.g. 24h.
Doesn't seem susceptible to man-in-the middle from what I can see: SSL secures the RC4 session key, in (5) the RC4 session key sent to the game server is encrypted as well. All that is possible is DoS and to cause the user request a key again. If the data in (2) is cached until it expires, this should not create a new packet.
The encryption in (3) could be improved by adding random bits to the key. Those random bits are sent together with the encrypted packet, and presented to the game server in (5). In (6) the game server adds those random bits to his key and uses the result to decrypt the data. This way and attacker cannot see when the packed data changes.
Are there any vulnerabilities I'm overlooking here?
A summary of payloads created:
Client login-credentials (protected by SSL), sent to login server
User info + timestamp + temporary game server session key + digest encrypted by login server using a secret key shared with game server, given to the client that - without modifying it - passes it to the game server. Ought to be temper resistant because: a) client does not know the secret key b) has timestamp to avoid resending same data c) digest to verify content was encrypted correctly
temporary game server session key sent by the login server to the client together with the encrypted payload. Protected by SSL.
Client game server login packet, consists of encrypted packet received by login server.
A summary of encryption keys:
Temporary game server session key: randomly generated by login server for encrypted game server <-> client communication. Generated by login server, given to client and game server.
Secret user info encryption key. Shared between game server and login server, used pass user info to game server with client as messenger. Client does not possess this key.
First of all I wouldn't use RC4. There are both faster and more secure stream ciphers around so if you control both client and server then you can probably do better than RC4. Discarding only 512 bytes may not be enough for the Fluhrer, Mantin and Shamir attack, but even if you discard more bytes there's also the Klein's attack etc. I don't know if it's worth the trouble.
Second, make sure that the keys you generate are random. I know it seems obvious but for an example see: http://www.debian.org/security/2008/dsa-1571
But the real problem is this part: "The game server 100% trusts the user info it has decrypted. This makes the servers completely decoupled which is nice, but if the key is compromised, users could completely fake their user info."
You have to assume that the user knows the key. His game client has to know the key so it can communicate with the server. If the user can use his real data to log in via ssl, get a key for stream cipher and then send whatever info he wants to the game server then all the attacker has to do is just get an account and do whatever he wants.
It doesn't matter how often you change the key because every time you change it you have to still give it to the client so you might as well change it after every byte and it still wouldn't matter here.
This is more important than the cipher used or the key generation because no one will brute force the key if he just gets it.
You should never trust the client. You should store the client data on the server side and match it with the key or sign the data and verify it or use HMAC etc. because if the game server 100% trusts the user info then you will have problems sooner o later. There is pretty much no way around it.
It sounds like you're trying to reinvent SSL. Why not issue each client a certificate (signed by your own root authority), and have them connect to the game server over SSL, with mutual authentication?
I understand you cannot use SSL between the game server and the client as you don't want to go through the handshake again.
The protocol seems ok from a first glance. There is no replay attack also as you really need the symmetric session key to do anything meaningful. The best thing you can do is switch to AES is also very fast and very secure. I highly doubt you will see any performance hit by switching to AES.
Also the first security concern bullet point you mentioned is not really a concern. Well it is a concern for all clients on the desktop, for example your browser has the same problem talking over HTTPS. So you don't really have to solve it. Your game logic somehow has to look for bad behavior if you want to actively monitor manipulation attempts. You cannot solve it by re-keying.
I ended up also posting on sci.crypt and I'll try to summarize the suggested changes (as far as I understand them) below in case it might be of interest.
Step 1: Client sends a HTTPS request to the login server with credentials
Assuming that the credentials take the form of a login token, also add a self-assigned unique id.
Step 3: The user information + RC4 session + timestamp + digest
Use an encryption algorithm that ensures integrity, instead of using a digest explicitly. E.g. AES-GCM or AES-CCM. Add the extra id field in step 1. Add the ip to the game server as well.
Step 4: The packaged data + RC4 session encryption key + ip address to the game server is sent as a reply.
Giving the timestamp to the client will allow the client to know when the session has expired. This avoids unnecessary connects to the game server with expired credentials.
Step 5: The client opens a connection to the game server, sends an initial unencrypted hello message with the encrypted user information as a payload.
Add the self-assigned id in step 1 unencrypted to the payload.
Step 6: The game server unpacks the data packaged in (3). It now knows the user and the RC4 encryption key it is supposed to use.
The game server matches both its own ip with the encrypted ip, as well as the encrypted id with the id given by the client. The first prevents the user from going to a different server with the same credentials.
Step 8: If everything checks ok, the server sends an unencrypted LOGIN_OK, and the RC4 encrypted communication starts.
At this point the game server cannot be sure of the client's identity. Use the session key and encrypt nonce + strictly increasing session id + login success state using AES-GCM/CCM and send it to the client.
The client decrypts and checks the login success state. If this is true, then the client knows that the game server knows the session key (GCM/CCM verifies that the packet has not been tampered with). The client returns sid + nonce.
The server verifies sid + nonce is the same as the values sent.
Finally the client and server creates new session keys by hash-ing the session key with sid + nonce + salt to create the key for the consequent communication, to prevent a possible replay attack.
Regarding RC4
There are vulnerabilities in RC4, but it probably would suffice for this scheme because of the rather aggressive key rescheduling. However, there are modern ciphers which are more secure and faster, such as Snow 2.0 or Trivium.
Just use SSL to the game server. Modern cryptanalysis has resulted in a few very fast implementations of some of the better encryption algorithms. For example, well optimized AES implementations can easily encrypt at better than 150MB/s on any remotely modern machine. Also while AES is held with high regard, it does have two weaknesses that I know of, but when used correctly those weaknesses become insignificant.
I noticed that you failed to mention that you would be using an advanced key scheduling algorithm between the client and the game server. Failing to do so would make the weaknesses of the encryption algorithm much more severe. SSL/TLS should do the key scheduling for you.
I'm in the designing stages of a custom tcp/ip protocol for mobile client-server communication. When not required (data is not sensitive), I'd like to avoid using SSL for overhead reasons (both in handshake latency and conserving cycles).
My question is, what is the best practices way of transmitting authentication information over an unencrypted connection?
Currently, I'm liking SRP or J-PAKE (they generate secure session tokens, are hash/salt friendly, and allow kicking into TLS when necessary), which I believe are both implemented in OpenSSL. However, I am a bit wary since I don't see many people using these algorithms for this purpose. Would also appreciate pointers to any materials discussing this topic in general, since I had trouble finding any.
Edit
Perhaps the question should have been: is there a best practices approach for secure passwords over unencrypted tcp/ip? If not, what are the reasons for selecting a particular method over others? (The Rooks answer is closest in spirit to this question so far, even if it does violate the letter).
Edit, part deux
I'm primarily interested in the case of client-server authentication, where there is an expectation that both parties have a shared secret (password) a priori.
You should have a look at "Diffie-Hellman key exchange":
Diffie–Hellman key exchange (D–H) is a cryptographic protocol that allows two parties that have no prior knowledge of each other to jointly establish a shared secret key over an insecure communications channel. This key can then be used to encrypt subsequent communications using a symmetric key cipher.
Once you have exchanged a key, you can encrypt your password with this key and transmit it over the insecure protocol.
I still think that SSL is by far your best choice, after all why reinvent the wheal when so much can go wrong? You don't have to buy an expensive certificate if your have a list of "good" and "bad" (compromised) certificates. openSSL is completely free, and i don't see a good reason not to use it.
Some things you might not know: ssl handshakes can be resumed.
Also you can use SSL/TLS over UDP to reduce overhead its called DTLS.
You could use a challenge-response algorithm. The algorithm goes like this:
The server sends a random string to the client.
The client combines this string with the password (by combining, you can xor them or just append them).
The client calculates a hash (for example, SHA1) of the result, and sends it to the server.
The server calculates the same hash using this random number and the real password.
The server compares the two hashes.
Since you shouldn't store a password in plain text, but as a hash instead, the client should calculate this hash at the very beginning.
There are possibly several libraries implementing this, so you probably don't need to code it yourself.
Assuming I've securely exchanged keys with another computer (using Diffie-Hellman perhaps), here's my tentative solution:
packet number + encrypted data + message authentication code (MAC)
The packet number is an incrementally-increased number starting at 0. After that is the encrypted data itself, followed by a MAC of them both. If someone attempts a MITM attack, the MAC should fail to compute. If they attempt a replay attack, the recipient will notice it has already received that packet number.
Is there any flaw in my reasoning here?
Assuming I've securely exchanged keys with another computer (using Diffie-Hellman perhaps)
This is where you face the biggest danger - if the man-in-the-middle manages to control the key exchange (for example, by establishing one key with the client and itself, and establishing another key with server and itself), then the MITM can decrypt (and re-encrypt) everything. Once you've established the secure key exchange, you should be invulnerable to the MITM attack. But the hard part is ensuring that the key exchange is truly secure.
Consult Practical Cryptography (or at Amazon) by Ferguson and Schneier for information about this.
You're not describing a man in the middle attack, but a replay attack.
With a MITM attack the key exchange is intercepted and you say that you already have exchanged keys securely - so it is not the problem.
Replay attacks are easy enough to mitigate against, you include a unique message ID and then check it for uniqueness on the receiving side. Generally each message has an expiry date and time so you don't need to keep an ever growing list of message IDs to validate.
Your approach for protecting against replay attacks seems reasonable to me. You are essentially describing a method called timestamping. Your packet number is a "virtual time" that is used by the recipient to verify that the message was not sent before.
Once the keys have been exchanged then the data cannot be intercepted or spoofed by a third party. (Except when your packet # counter loops. Hypothetically packets from the old window could be replayed as being from the new window.) The solution to this problem is timestamping (as others have mentioned.) Again, though, this can be sabotaged if the attacker is able to compromise in some way the system time. (If they are a man in the middle, they could hypothetically imitate an NTP server and in that way modify a client's system time.)
What an eavesdropper COULD do however is to insert himself between the two parties and disrupt the channel. This would likely cause a new key exchange to occur which could be observed. In order to make key exchange truly secure, you must use 3rd party validation or a pre shared key which only the two communicators know.