What are the advantages of a 64-bit processor? - 64-bit

Obviously, a 64-bit processor has a 64-bit address space, so you have more than 4 GB of RAM at your disposal. Does compiling the same program as 64-bit and running on a 64-bit CPU have any other advantages that might actually benefit programs that aren't enormous memory hogs?
I'm asking about CPUs in general, and Intel-compatible CPUs in particular.

There's a great article on Wikipedia about the differences and benefits of 64bit Intel/AMD cpus over their 32 bit versions. It should have all the information you need.
Some on the key differences are:
16 general purpose registers instead of 8
Additional SSE registers
A no execute (NX) bit to prevent buffer overrun attacks

The main advantage of a 64-bit CPU is the ability to have 64-bit pointer types that allow virtual address ranges greater than 4GB in size. On a 32-bit CPU, the pointer size is (typically) 32 bits wide, allowing a pointer to refer to one of 2^32 (4,294,967,296) discrete addresses. This allows a program to make a data structure in memory up to 4GB in size and resolve any data item in it by simply de-referencing a pointer. Reality is slightly more complex than this, but for the purposes of this discussion it's a good enough view.
A 64-bit CPU has 64-bit pointer types that can refer to any address with a space with 2^64 (18,446,744,073,709,551,616) discrete addresses, or 16 Exabytes. A process on a CPU like this can (theoretically) construct and logically address any part of a data structure up to 16 Exabytes in size by simply de-referencing a pointer (looking up data at an address held in the pointer).
This allows a process on a 64-bit CPU to work with a larger set of data (constrained by physical memory) than a process on a 32 bit CPU could. From the point of view of most users of 64-bit systems, the principal advantage is the ability for applications to work with larger data sets in memory.
Aside from that, you may get a native 64-bit integer type. A 64 bit integer makes arithmetic or logical operations using 64 bit types such as C's long long faster than one implemented as two 32-bit operations. Floating point arithmetic is unlikely to be significantly affected, as FPU's on most modern 32-bit CPU's natively support 64-bit double floating point types.
Any other performance advantages or enhanced feature sets are a function of specific chip implementations, rather than something inherent to a system having a 64 bit ALU.

This article may be helpful:
http://www.softwaretipsandtricks.com/windowsxp/articles/581/1/The-difference-between-64-and-32-bit-processors
This one is a bit off-topic, but might help if you plan to use Ubuntu:
http://ubuntuforums.org/showthread.php?t=368607
And this pdf below contains a detailed technical specification:
http://www.plmworld.org/access/tech_showcase/pdf/Advantage%20of%2064bit%20WS%20for%20NX.pdf

Slight correction. On 32-bit Windows, the limit is about 3GB of RAM. I believe the remaining 1GB of address space is reserved for hardware. You can still install 4GB, but only 3 will be accessable.
Personally I think anyone who hasn't happily lived with 16K on an 8-bit OS in a former life should be careful about casting aspersions against some of today's software starting to become porcine. The truth is that as our resources become more plentiful, so do our expectations. The day is not long off when 3GB will start to seem ridiculously small. Until that day, stick with your 32-bit OS and be happy.

About 1-3% of speed increase due to instruction level parallelism for 32-bit calculations.

Just wanted to add a little bit of information on the pros and cons of 64-bit CPUs. https://blogs.msdn.microsoft.com/joshwil/2006/07/18/should-i-choose-to-take-advantage-of-64-bit/

The main difference between 32-bit processors and 64-bit processors is the speed they operate. 64-bit processors can come in dual core, quad core, and six core versions for home computing (with eight core versions coming soon). Multiple cores allow for increase processing power and faster computer operation. Software programs that require many calculations to function operate faster on the multi-core 64-bit processors, for the most part. It is important to note that 64-bit computers can still use 32-bit based software programs, even when the Windows operating system is a 64-bit version.
Another big difference between 32-bit processors and 64-bit processors is the maximum amount of memory (RAM) that is supported. 32-bit computers support a maximum of 3-4GB of memory, whereas a 64-bit computer can support memory amounts over 4 GB. This is important for software programs that are used for graphical design, engineering design or video editing, where many calculations are performed to render images, drawings, and video footage.
One thing to note is that 3D graphic programs and games do not benefit much, if at all, from switching to a 64-bit computer, unless the program is a 64-bit program. A 32-bit processor is adequate for any program written for a 32-bit processor. In the case of computer games, you'll get a lot more performance by upgrading the video card instead of getting a 64-bit processor.
In the end, 64-bit processors are becoming more and more commonplace in home computers. Most manufacturers build computers with 64-bit processors due to cheaper prices and because more users are now using 64-bit operating systems and programs. Computer parts retailers are offering fewer and fewer 32-bit processors and soon may not offer any at all.

Related

What can make a program not capable to take advantages of 64 bit system?

I am looking into Google V8 Javascript Engine. It is said that they are having problems for porting to 64 bit systems.
What kind of programming or programming constraints can make a program a 32-bit or 64-bit specific, apart from building and testing them on 64 bit machine with 64 bit settings ?
You may check this wiki which says:-
The main disadvantage of 64-bit architectures is that, relative to
32-bit architectures, the same data occupies more space in memory (due
to longer pointers and possibly other types, and alignment padding).
This increases the memory requirements of a given process and can have
implications for efficient processor cache utilization. Maintaining a
partial 32-bit model is one way to handle this, and is in general
reasonably effective. For example, the z/OS operating system takes
this approach, requiring program code to reside in 31-bit address
spaces (the high order bit is not used in address calculation on the
underlying hardware platform) while data objects can optionally reside
in 64-bit regions.

What <4GB workloads would have worse performance in the Linux x32 ABI than x64?

There is a relatively new Linux ABI referred to as x32, where the x86-64 processor runs in 32-bit mode, so pointers are still only 32-bits, but the 64-bit architecture specific registers are still used. So you're still limited to 4GB max memory use as in normal 32-bit, but your pointers use up less cache space than they do in 64-bit, you can do 64-bit arithmetic efficiently, and you get access to more registers (16) than you would in vanilla 32-bit (8).
Assuming you have a workload that fits nicely within 4GB, is there any way the performance of x32 could be worse than on x86-64?
It seems to me that if you don't need the extra memory space nothing is lost -- you should always get the same perf (when you already fit in cache) or better (when the pointer space savings lets you fit more in cache). But it wouldn't surprise me if there are paging/TLB/etc. details that I don't know about.
Certainly if you have a multithreaded program, the fact that data structures are smaller on x32 might cause cache line fighting between threads -- different objects might get allocated on the same cache line in x32 mode and different cache lines in x86_64 mode. If two threads modify those objects independently the cache ping-ponging could severely slow down the x32 code. Of course, this kind of cache effect could happen regardless of pointer size, but if the code has been tuned assuming 64-bit pointers, going to 32-bit pointers could de-tune things.
In X32 the processor is actually executing in "long mode", the same mode as for x86_64. That is, addresses as seen by the processor when doing addressing are still 64 bits, however the X32 ABI makes sure that all addresses are small enough to fit into 32 bits. As a result of this, in some case there is some slight overhead when pointers have to be zero extended from 32 bits to 64.
Also, needing x86/x86-64/x32 libraries in RAM, which I suppose is what one will end up with in practice (unless you're talking about some embedded or other tightly controlled system rather than a general purpose computer), may eat up some of the benefit of X32.

How to programatically detect a 64 bit or 32 bit machine?

I don't understand what 32 bit and 64 bit means. It seems that people say 64 bit computers run faster - but why? Does it mean that there are 64 bit integers instead of 32? If it's something like that, is there a way to write a program to determine if we're on a 32 bit or 64 bit machine?
On 64-bit machines pointers are 8 bytes (64 bits). On 32-bit machines they are 4 bytes (32 bits). Thus we can determine by the size of a pointer what we are dealing with, in it's simplest form:
#define IS_64BIT (sizeof(void *) == 8)
The only drawback is that a 64 bit computer running in 32 bit mode will register as 32 bit. Of course, this isn't actually important as for all intents and purposes a 32 bit OS on a 64 bit computer will be a 32 bit computer.
There's actually several different things your asking here.
First of all there's the CPU. Most modern day CPUs (within the past 5-years approx) will support 64-bit.
Now just because the CPU supports it doesn't mean the OS supports it, that's where you have either 64-bit OS or 32-bit OS (32-bit is also known as x86, there's small technical differences in the x86 refers to the CPU instruction set, but for most common usage x86 and 32-bit are interchangeable)
Even if the OS supports it, it doesn't mean the specific program you're running supports 64-bit. What most (if not all?) 64-bit OS's do is they have a 32-bit emulation mode so you can still run 32-bit programs.
Now for your question of how to determine which architecture you're running on, the most reliable way is to ask the OS through some API call.
As for why 64-bit is sometimes considered faster, it because with 32-bits it is only possible to address 4GB of memory, whereas with 64-bit the limit imposed by address space is much higher (as in about 4 billion times higher) and the limiting factor is hardware not address space. As to when and why more memory is faster, that's a separate topic altogether.
64-bit machines do not run faster than 32-bit machines except in cases where 64-bit math is being done or in cases where more than 4 GB of RAM is needed.
64-bit AMD (and later Intel) machines run faster than 32-bit x86 machines because when AMD designed the new instruction set they added more CPU registers and made SSE math the default.
32-bit x86 systems can waste a lot of CPU time pushing data around in RAM, while a x86_64 system can store that data in CPU registers instead. Registers are much faster than level-1 CPU cache. Having more registers also saves CPU instructions that otherwise need to store the old value of a register in RAM, load in a different value from RAM, then load the original value back from RAM.
In some especially register-starved cases the extra registers can gain 30% speed for a program. The benefit is usually much less than that.
The speed benefits from assuming SSE2 are many. In 32-bit CPUs SSE instructions may or may not exist, so to use them the software needs to have clumsy test code and two (or more!) implementation of the math functions. Most software just doesn't care enough and so it never bothers, always falling back on x87 FPU math from the 486 days. The 64-bit CPUs made SSE2 a required part of the instruction set, so all x86_64 programs are free to assume it exists and use it in all cases.
64bit computers do not run faster, per se. It just can support higher precision (larger integers, more precise floats).
In some rare cases, libraries might jam two 32bit numbers into 64bits to perform a large number of parallel operations, possibly resulting in potentially up to 2x speedup. This might occur for some highly optimized scientific/numeric libraries, or in special applications that (for some reason or another) have been highly optimized at a very low level. For example, some multimedia software. It should be noted that such applications could always have made this tradeoff even in 32bit mode, but chose not to; they are merely trading away precision (which they may not need) for parallelism.
Operating system benchmarks which reveal faster performance (maybe <10% improvement) are not necessarily related to 64bit-related optimizations. 64bit architectures may be correlated with having for example more registers or advanced features that programs can take aware of [citation: http://www.tuxradar.com/content/ubuntu-904-32-bit-vs-64-bit-benchmarks ], which may be the cause of a performance difference (as well as other variables).
How to determine whether a CPU is 32bit or 64bit depends on what OS you are using. For example on Linux, you can call uname -a, though there's probably a better way to do so. If you're using C/C++, see the other answer for a way to determine it in a program.

What is the difference between a 32-bit and 64-bit processor?

I have been trying to read up on 32-bit and 64-bit processors (http://en.wikipedia.org/wiki/32-bit_processing). My understanding is that a 32-bit processor (like x86) has registers 32-bits wide. I'm not sure what that means. So it has special "memory spaces" that can store integer values up to 2^32?
I don't want to sound stupid, but I have no idea about processors. I'm assuming 64-bits is, in general, better than 32-bits. Although my computer now (one year old, Win 7, Intel Atom) has a 32-bit processor.
All calculations take place in the registers. When you're adding (or subtracting, or whatever) variables together in your code, they get loaded from memory into the registers (if they're not already there, but while you can declare an infinite number of variables, the number of registers is limited). So, having larger registers allows you to perform "larger" calculations in the same time. Not that this size-difference matters so much in practice when it comes to regular programs (since at least I rarely manipulate values larger than 2^32), but that is how it works.
Also, certain registers are used as pointers into your memory space and hence limits the maximum amount of memory that you can reference. A 32-bit processor can only reference 2^32 bytes (which is about 4 GB of data). A 64-bit processor can manage a whole lot more obviously.
There are other consequences as well, but these are the two that comes to mind.
First 32-bit and 64-bit are called architectures.
These architectures means that how much data a microprocessor will process within one instruction cycle i.e. fetch-decode-execute
In one second there might be thousands to billions of instruction cycles depending upon a processor design.
32-bit means that a microprocessor can execute 4 bytes of data in one instruction cycle while 64-bit means that a microprocessor can execute 8 bytes of data in one instruction cycle.
Since microprocessor needs to talk to other parts of computer to get and send data i.e. memory, data bus and video controller etc. so they must also support 64-bit data transfer theoretically. However, for practical reasons such as compatibility and cost, the other parts might still talk to microprocessor in 32 bits. This happened in original IBM PC where its microprocessor 8088 was capable of 16-bit execution while it talked to other parts of computer in 8 bits for the reason of cost and compatibility with existing parts.
Imagine that on a 32 bit computer you need to write 'a' as 'A' i.e. in CAPSLOCK, so the operation only requires 2 bytes while computer will read 4 bytes of data resulting in overhead. This overhead increases in 64 bit computer to 6 bytes. So, 64 bit computers not necessarily be fast all the times.
Remember 64 bit windows could be run on a microprocessor only if it supports 64-bit execution.
Processor calls data from Memory i.e. RAM by giving its address to MAR (Memory Address Register). Selector electronics then finds that address in the memory bank and retrieves the data and puts it in MDR (Memory Data Register) This data is recorded in one of the Registers in the Processor for further processing. Thats why size of Data Bus determines the size of Registers in Processor. Now, if my processor has 32 bit register, it can call data of 4 bytes size only, at a time. And if the data size exceeds 32 bits, then it would required two cycles of fetching to have the data in it. This slows down the speed of 32 bit Machine compared to 64 bit, which would complete the operation in ONE fetch cycle only. So, obviosly for the smaller data, it makes no difference if my processors are clocked at the same speed.
Again, with 64 bit processor and 64 bit OS, my instructions will be of 64 bit size always... which unnecessarily uses up more memory space.
32bit processors can address a memory bank with 32 bit address with. So you can have 2^32 memory cells and therefore a limited amount of addressable memory (~ 4GB). Even when you add another memory bank to your machine it can not be addressed. 64bit machines therefore can address up to 2^64 memory cells.
This answer is probably 9 years too late, but I feel that the above answers don't adequately answer the question.
The definition of 32-bit and 64-bit are not well defined or regulated by any standards body. They are merely intuitive concepts. The 32-bit or 64-bit CPU generally refers to the native word size of the CPU's instruction set architecture (ISA). So what is an ISA and what is a word size?
ISA and word size
ISA is the machine instructions / assembly mnemonics used by the CPU. They are the lowest level of a software which directly tell what the hardware to do. Example:
ADD r2,r1,r3 # add instruction in ARM architecture to do r2 = r1 + r3
# r1, r2, r3 refer to values stored in register r1, r2, r3
# using ARM since Intel isn't the best when learning about ISA
The old definition of word size would be the number of bits the CPU can compute in one instruction cycle. In modern context the word size is the default size of the registers or size of the registers the basic instruction acts upon (I know I kept a lot of ambiguity in this definition, but it's an intuitive concept across multiple architectures which don't completely match with each other). Example:
ADD16 r2,r1,r3 # perform addition half-word wise (assuming 32 bit word size)
ADD r2,r1,r3 # default add instruction works in terms of the word size
Example bit-ness of a Pentium Pro CPU with PAE
First, various word sizes in general purpose instrucion:
Arithmetic, logical instructions: 32 bit (Note that this violates old concept of word size since multiply and divide takes more than one cycle)
Branch, jump instructions: 32 bit for indirect addressing, 16-bit for immediate (Again Intel isn't a great example because of CISC ISA and there is enough complexity here)
Move, load, store: 32 bit for indirect, 16 bit for immediate (These instructions may take several cycles, so old definition of word size does not hold)
Second, bus and memory access sizes in hardware architecture:
Logical address size before virtual address translation: 32 bit
Virtual address size: 64-bit
Physical address size post translation: 36 bit (system bus address bus)
System bus data bus size: 256 bit
So from all the above sizes, most people intuitively called this a 32-bit CPU (despite no clear consensus on ALU word size and address bit size).
Interesting point to note here is that in olden days (70s and 80s) there were CPU architectures whose ALU word size was very different from it's memory access size. Also note that we haven't even dealt with the quirks in non-general purpose instructions.
Note on Intel x86_64
Contrary to popular belief, x86_64 is not a 64-bit architecture in the truest sense of the word. It is a 32 bit architecture which supports extension instructions which can do 64 bit operations. It also supports a 64-bit logical address size. Intel themselves call this ISA IA32e (IA32 extended, with IA32 being their 32-bit ISA).
References
ARM instruction examples
Intel addressing modes
From here:
The main difference between 32-bit processors and 64-bit processors is
the speed they operate. 64-bit processors can come in dual core, quad
core, and six core versions for home computing (with eight core
versions coming soon). Multiple cores allow for increase processing
power and faster computer operation. Software programs that require
many calculations to function operate faster on the multi-core 64-bit
processors, for the most part. It is important to note that 64-bit
computers can still use 32-bit based software programs, even when the
Windows operating system is a 64-bit version.
Another big difference between 32-bit processors and 64-bit processors
is the maximum amount of memory (RAM) that is supported. 32-bit
computers support a maximum of 3-4GB of memory, whereas a 64-bit
computer can support memory amounts over 4 GB. This is important for
software programs that are used for graphical design, engineering
design or video editing, where many calculations are performed to
render images, drawings, and video footage.
One thing to note is that 3D graphic programs and games do not benefit
much, if at all, from switching to a 64-bit computer, unless the
program is a 64-bit program. A 32-bit processor is adequate for any
program written for a 32-bit processor. In the case of computer games,
you'll get a lot more performance by upgrading the video card instead
of getting a 64-bit processor.
In the end, 64-bit processors are becoming more and more commonplace
in home computers. Most manufacturers build computers with 64-bit
processors due to cheaper prices and because more users are now using
64-bit operating systems and programs. Computer parts retailers are
offering fewer and fewer 32-bit processors and soon may not offer any
at all.
32-bit and 64-bit are basically the registers size, register the fastest type of memory and is closest to the CPU. A 64-bit processor can store more data for addressing and transmission than a 32-bit register but there are other factors also on the basis of the speed of the processor is measured such as the number of cores, cache memory, architecture etc.
Reference: Difference between 32-bit processor and 64-bit processor
From what is the meaning of 32 bit or 64 bit
process??
by kenshin123 :
The virtual addresses of a process are the mappings of an address
table that correspond to real physical memory on the system. For
reasons of efficiency and security, the kernel creates an abstraction
for a process that gives it the illusion of having its own address
space. This abstraction is called a virtual address space. It's just a
table of pointers to physical memory.
So a 32-bit process is given about 2^32 or 4GB of address space. What
this means under the hood is that the process is given a 32-bit page
table. In addition, this page table has a 32-bit VAS that maps to 4GB
of memory on the system.
So yes, a 64-bit process has a 64-bit VAS. Does that make sense?
there are 8 bits in a byte so if its 32 bit you are processing 4 bytes of data at whatever ghz or mhz your cpu is clocked at per second. so if there is a 64 bit cpu and 32 bit cpu clocked at the same speed the 64 bit cpu would be faster
32 bit processors are processing 32 bits of data based on Ghz of Processor in per second and 64 bit processors are processing 64bit of data per second on what speed your PC has. as well the 34 bit processors works with 4GB of RAM .

Is there any advantage for developing on a 64 bit OS?

I'm not sure I understand it properly: does a 64 bit OS run/compile code faster than a 32 bit OS on the same system?
We're using 64 bit OSs where I am and it seems to only cause compatibility issues with legacy and proprietary software. (We're running Ubuntu 9.04 Jaunty amd64)
I will restrict this answer to x86-32 (IA-32) vs x86-64 (AMD64), as I believe that's the question you're actually asking.
At the processor level, there are a few advantages. First and most obvious is the expansion of the per-process virtual memory to a much wider range of 48 bits. (64 is allowed in the architecture but not required, if memory serves.) That enables applications to use a lot more of the system's memory available to them, as well as opening up a lot of space for things like memory mapped files that operate on virtual memory that isn't linked to real memory. It also opens up a lot of space for the OS in question to work, as it doesn't have to share your 4 GB limit for its data. In short, applications and the OS can make better use of your machine's resources.
Additionally, the AMD64 architecture addresses one of the biggest problems of IA-32, which is the utter lack of registers. In fact it doubles the available registers, which is a huge win for some types of code. (Actually it's a win for almost ANY code, but some applications suffer from the increased memory cost of 64 bits and it evens out.)
On the Windows side, MS has taken it as an opportunity to break a whole bunch of historical compability problems. It's not a clean break from the old world, but it's a start. I don't believe Linux suffers from the same problems to begin with, and I don't have much perspective to offer on their 64 bit advantages.
As a general rule, developing--or using--a 64-bit operating system, in any context, will be slower than the same 32-bit operating system. Because all pointers are suddenly twice as large, you are far more likely to blow the cache, and can fit less data in RAM. That slows down your application considerably. You normally would only use 64-bit systems when your applications need to address more than 2 to 3 GB of data simultaneously--something very common in scientific computing and some database situations, but otherwise extremely rare. This is why Apple does not advocate unconditionally compiling PowerPC applications in 64-bit mode, for example: the cost due to cache-misses and lack of memory are high enough that going 64-bit only makes sense when you truly can take advantage of the 64-bit space.
But x86 v. AMD64, which is what you're really asking about (since you're discussing Ubuntu), is a very special beast. AMD64 not only extends all pointers to 64-bit; it fixes many, many deficiencies in the x86 architecture, doubling the number of GPRs, simplifying the instructions to be more friendly to modern CPU designs, and more. Because of this, on AMD64 platforms only, you will frequently see a substantial performance boost by going to 64-bit.
There is one other area where, in software development, it makes sense to go to 64-bit: you need to run lots of VMs. Running a couple of VMs can easily blow you past the 3 GB memory barrier of the operating system, making using them very painful. (It will work due to a technology called PAE, or Paged Addressing Extensions, that Intel invented to bridge the gap between 32-bit systems and 64-bit systems, but the result is slow, painful to work with as a developer, and not very well supported on Windows.) Going to a 64-bit OS can provide tremendous benefits.
(As the commentators note, this answer is somewhat generic, some of these points do not apply to intel/amd chips.)
The answer is: it varies, for a few reasons:
With larger-width instructions, you're going to get more expressiveness (either a greater variety of instructions or a greater capacity to encode data into those instructions directly), which can mean a reduced number of instructions flowing through the machine, which is generally a win: so ++64bit here.
But sometimes larger instructions might take more cycles to decode and execute, because they may be more complex. So a possible --64bit here.
Also, you need to transfer these instructions to and from the CPU: 64 bit instructions are twice as big as 32 bit instructions, which means more traffic to and from memory and the caches. CPUs are structured to ameliorate a lot of this cost, but it is a slight --64bit here.
More registers are usually available in wider instruction sets, which causes less data traffic to and from the stack and or memory. So ++64bit here.
And as everyone's no doubt going to mention, you have the ability to address more memory.
(Nearly forgot this one) the native "long" or "int" size may go up, depending on architecture, meaning data structures based on these get larger. Larger = more memory to move around, which means more possible waiting on data moving: --64bit if you're not careful.
Depending on your architecture, a lot of other concerns may apply too. You can rest assured that the processor and compiler vendors are working their butts off to reduce the "--"s above and increase the "++"s.
I have this 5GByte database that needs converting. On a 64-bit system, I just put all data in collections. In the 32-bit system, I had to think about the order in which to load and convert. The problem is not run-time, it is engineering time. Switching to 64 bit saves weeks of development time.
The compatability issues: that's no bug, that's a feature. It shows you who has written clean software.
There are also some security advantages to using 64-bit operating systems. There have been some buffer overflow exploits that circumvent address space layout randomization by brute force. On a 64-bit OS, there are simply too many addresses for this kind of attack to be successful.
It will speed up compilation if your compile process is memory-bound and you use your 64bit OS to increase the amount of memory usable by your system.
I expect it to be slightly slower, I had that experience with FC10. I don't have real reasons, but it is definitely not the sizeof(pointer) issue. (*)
My own hunch is that it simply is a matter of less optimized drivers or tweaked chipsets.
Also NTFS-3g was funny under 64-bit, while it worked under 32-bit (same distro, same kernel same partition, it just "hung" in some circumstances)
(*) most compiling is disk bound, not CPU bound. Moreover there are other improvements in the x86_64 architecture that cancel out that fact (better PIC, more regs, SSE2 default on, 686 cmov default on) . Unless your app does nothing than randomly moving small blocks around.

Resources