New to functional programming [closed] - haskell

It's difficult to tell what is being asked here. This question is ambiguous, vague, incomplete, overly broad, or rhetorical and cannot be reasonably answered in its current form. For help clarifying this question so that it can be reopened, visit the help center.
Closed 11 years ago.
Hey, I'm really new to Haskell and have been using more classic programming languages my whole life. I have no idea what is going on here. I'm trying to make a very simple Viterbi algorithm implementation, but for only two states (honest and dishonest casino)
I have a problem where I want to address my array, but I don't think I'm getting types right. That or I'm making a new array each time I try to address it - equally stupid. Look at myArray, te infix, and dynamicProgram especially, PLEASE. Pretty pretty please
Code
import Array
import Char
trans :: Int -> Int -> Double -> Double -> Double
trans from x trans11 trans21 =
if (from == 1) && (x == 1)
then trans11
else if (from == 1) && (x == 2)
then (1-trans11)
else if (from == 2) && (x == 1)
then trans21
else (1-trans21)
em :: Char -> [Double] -> Double
em c list = list!! a
where a = digitToInt c
intToChar :: Int -> Char
intToChar n | n == 1 = '1'
| n == 2 = '2'
casino :: Char -> Int -> Int -> [Double] -> [Double] -> Double -> Double -> Double
casino seqchar 1 y em1 em2 t1 t2= 0.5 * (em seqchar em1)
casino seqchar 2 y em1 em2 t1 t2= 0.5 * (em seqchar em2)
casino seqchar x y em1 em2 t1 t2= maximum[ (1 ## y-1)*(em seqchar em1)*(trans 1 x t1 t2),(2 ## y-1)*(em seqchar em2)*(trans 2 x t1 t2) ]
dynamicProgram :: [Char] -> (Char -> Int -> Int -> [Double] -> [Double] -> Double -> Double -> Double) -> [Double] -> [Double] -> Double -> Double -> (Array a b)
dynamicProgram string score list1 list2 trans11 trans21 = myArray 1 len
[score (string!!y) x y list1 list2 trans11 trans21 | x Int -> [Double] -> Array a b
myArray startIndex endIndex values = listArray (startIndex,startIndex) (endIndex,endIndex) values
traceback :: [Char] -> Int -> Int -> [Double] -> [Double] -> Double -> Double -> [Char]
traceback s 1 0 em1 em2 t1 t2 = []
traceback s 2 0 em1 em2 t1 t2 = []
traceback s x y em1 em2 t1 t2 | x##y == (1 ## y-1)*(em (s!!y) em1)*(trans 1 x t1 t2) = '1' : traceback s 1 (y-1) em1 em2 t1 t2
| x##y == (2 ## y-1)*(em (s!!y) em1)*(trans 2 x t1 t2) = '2' : traceback s 2 (y-1) em1 em2 t1 t2
answer :: [Char] -> [Double] -> [Double] -> Double -> Double -> [Char]
answer string list1 list2 t1 t2 = reverse $ maxC : traceback string max end list1 list2 t1 t2 $ dynamicProgram casino string list1 list2 t1 t2
where
end = (length string) + 1
max | maximum (1##end) (2##end) == 1##end = 1
| maximum (1##end) (2##end) == 2##end = 2
maxC = intToChar max
infix 5 ##
(##) i j = myArray ! (i, j)
main = do
putStrLn "What is the sequence to test?"
seq state 1 transmission probability?"
trp1 state 2 transmission probability is " ++ (1-trp1)
putStrLn "What is the state 2 -> state 1 transmission probability?"
trp2 state 2 transmission probability is " ++ (1-trp2)
putStrLn "I assume that the prob of starting in either state is 1/2. Go!"
answer seq st1 st2 trp1 trp2

I copied the code from the edit window (something in stackoverflow's parser is eating part of the code) and tried it on ghci, which found several errors. The first error was:
foo.hs:34:71:
Couldn't match expected type `[e]' against inferred type `(a, b)'
In the second argument of `listArray', namely
`(endIndex, endIndex)'
In the expression:
listArray (startIndex, startIndex) (endIndex, endIndex) values
In the definition of `myArray':
myArray startIndex endIndex values
= listArray (startIndex, startIndex) (endIndex, endIndex) values
The type of listArray is:
listArray :: (Ix i) => (i, i) -> [e] -> Array i e
-- Defined in GHC.Arr
It takes a tuple with the lower and upper bounds and the list. So, the correct expression would probably be:
listArray (startIndex, endIndex) values
And the type of myArray is not Array a b, it is Array Int Double.
The second error was:
foo.hs:43:44:
Couldn't match expected type `a -> b'
against inferred type `[Char]'
In the first argument of `($)', namely
`maxC : (traceback string max end list1 list2 t1 t2)'
In the second argument of `($)', namely
`(maxC : (traceback string max end list1 list2 t1 t2))
$ (dynamicProgram casino string list1 list2 t1 t2)'
In the expression:
reverse
$ ((maxC : (traceback string max end list1 list2 t1 t2))
$ (dynamicProgram casino string list1 list2 t1 t2))
$ is right associative, so the rightmost $ is looked at first. The first parameter to it must be a function, which it will call with its rightmost parameter as the argument. Here, however, it is a list.
The third error was:
foo.hs:51:11:
Couldn't match expected type `Array i e'
against inferred type `Int -> Int -> [Double] -> Array a b'
In the first argument of `(!)', namely `myArray'
In the expression: myArray ! (i, j)
In the definition of `##': ## i j = myArray ! (i, j)
myArray is not an array; it is a function which takes three parameters and constructs an array based on them.
Here probably your being used to more traditional imperative languages is tripping you. In a traditional imperative language, it would be natural to have a global myArray variable which you then can access from the middle of your program. In Haskell however, absent more advanced trickery which you should not try while you are a beginner, a "global" variable is more like a constant value (which is lazily computed on first use, but which as far as you care could have been computed by the compiler while generating your executable). You cannot initialize it from values you read as input.
Your best way around that is to pass the array through the program, which unfortunately will need several changes and negates the usefulness of your ## operator. You can hide the passing of the array in several more advanced ways, but while learning it is best to be more explicit.
The last error was:
foo.hs:63:4:
Couldn't match expected type `[a]' against inferred type `IO ()'
In the first argument of `(++)', namely
`putStrLn
"I assume that the state 1 -> state 2 transmission probability is "'
In the expression:
(putStrLn
"I assume that the state 1 -> state 2 transmission probability is ")
++
(1 - trp1)
In a 'do' expression:
(putStrLn
"I assume that the state 1 -> state 2 transmission probability is ")
++
(1 - trp1)
This has two errors: the one the compiler complained about is a precedence problem, as the compiler-added parenthesis readly show, and which can easily be fixed by correct application of either parenthesis or the $ operator. The other error, which you will find after you fix this one, is that you cannot concatenate a string and a number; you have to convert the number to a string.
This was all without looking at the algorithm or even most of the code, just looking at the compiler errors. If you want a two-dimensional array, for instance, the correct expression for the first error would be:
listArray ((startIndex, startIndex), (endIndex, endIndex)) values
Now both bounds are tuples, and its type is Array (Int, Int) Double.

You can rewrite the trans-function like this:
trans :: Int -> Int -> Double -> Double -> Double
trans 1 1 trans11 trans21 = trans11
trans 1 2 trans11 trans21 = 1-trans11
trans 2 1 trans11 trans21 = trans21
trans _ _ trans11 trans21 = 1-trans21

Related

Swapping 2 characters in list of strings (Haskell)

I need to swap blank space with letter from "moves" and each time I swap it I need to continue with another one from moves. I get Couldn't match expected type, even though I just want to return value x when it doesn't meet condition.
Error message:
[1 of 1] Compiling Main ( puzzlesh.hs, interpreted )
puzzlesh.hs:19:43: error:
• Couldn't match expected type ‘Int -> a’ with actual type ‘Char’
• In the expression: x
In the expression: if x == ' ' then repl x else x
In an equation for ‘eval’: eval x = if x == ' ' then repl x else x
• Relevant bindings include
eval :: Char -> Int -> a (bound at puzzlesh.hs:19:5)
repl :: forall p. p -> Int -> a (bound at puzzlesh.hs:20:5)
moves :: [a] (bound at puzzlesh.hs:16:9)
p :: t [Char] -> [a] -> [Int -> a] (bound at puzzlesh.hs:16:1)
|
19 | eval x = if x == ' ' then repl x else x
| ^
Failed, no modules loaded.
Code:
import Data.Char ( intToDigit )
sample :: [String]
sample = ["AC DE",
"FBHIJ",
"KGLNO",
"PQMRS",
"UVWXT"]
moves = "CBGLMRST"
type Result = [String]
pp :: Result -> IO ()
pp x = putStr (concat (map (++"\n") x))
p input moves = [eval x | x <- (concat input)]
where
c = 1
eval x = if x == ' ' then repl x else x
repl x count = moves !! count
count c = c + 1
I need to take character from moves, replace it onto blank space and do this till moves is []
Desired output:
ABCDE
FGHIJ
KLMNO
PQRST
UVWX
As with most problems, the key is to break it down into smaller problems. Your string that encodes character swaps: can we break that into pairs?
Yes, we just need to create a tuple from the first two elements in the list, and then add that to the result of calling pairs on the tail of the list.
pairs :: [a] -> [(a, a)]
pairs (x:tl#(y:_)) = (x, y) : pairs tl
pairs _ = []
If we try this with a string.
Prelude> pairs "CBGLMRST"
[('C','B'),('B','G'),('G','L'),('L','M'),('M','R'),('R','S'),('S','T')]
But you want a blank space swapped with the first character:
Prelude> pairs $ " " ++ "CBGLMRST"
[(' ','C'),('C','B'),('B','G'),('G','L'),('L','M'),('M','R'),('R','S'),('S','T')]
Now you have a lookup table with original characters and their replacements and the rest is straightforward. Just map a lookup on this table over each character in each string in the list.
Because you never touch any letter in the original strings more than once, you won't have to worry about double replacements.
Prelude> s = ["AC DE","FBHIJ","KGLNO","PQMRS","UVWXT"]
Prelude> r = "CBGLMRST"
Prelude> r' = " " ++ r
Prelude> p = pairs r'
Prelude> [[case lookup c p of {Just r -> r; _ -> c} | c <- s'] | s' <- s]
["ABCDE","FGHIJ","KLMNO","PQRST","UVWXT"]

Is it possible to generalise equations in Haskell?

Apologies for my poor wording of the question. I've tried searching for an answer but not knowing what to search is making it very difficult to find one.
Here is a simple function which calculates the area of a triangle.
triangleArea :: Float -> Float -> Float -> Float
triangleArea a b c
| (a + b) <= c = error "Not a triangle!"
| (a + c) <= b = error "Not a triangle!"
| (b + c) <= a = error "Not a triangle!"
| otherwise = sqrt (s * (s - a) * (s - b) * (s - c))
where s = (a + b + c) / 2
Three lines of the function have been taken up for the purposes of error checking. I was wondering if these three lines could be condensed into one generic line.
I was wondering if something similar to the following would be possible
(arg1 + arg2) == arg3
where Haskell knows to check each possible combination of the three arguments.
I think #behzad.nouri's comment is the best. Sometimes doing a little math is the best way to program. Here's a somewhat overdone expansion on #melpomene's solution, which I thought would be fun to share. Let's write a function similar to permutations but that computes combinations:
import Control.Arrow (first, second)
-- choose n xs returns a list of tuples, the first component of each having
-- n elements and the second component having the rest, in all combinations
-- (ignoring order within the lists). N.B. this would be faster if implemented
-- using a DList.
choose :: Int -> [a] -> [([a],[a])]
choose 0 xs = [([], xs)]
choose _ [] = []
choose n (x:xs) =
map (first (x:)) (choose (n-1) xs) ++
map (second (x:)) (choose n xs)
So..
ghci> choose 2 [1,2,3]
[([1,2],[3]),([1,3],[2]),([2,3],[1])]
Now you can write
triangleArea a b c
| or [ x + y <= z | ([x,y], [z]) <- choose 2 [a,b,c] ] = error ...
This doesn't address the question of how to shorten your error checking code, but you may be able to limit how often you repeat it by defining some new types with invariants. This function needs error checking because you can't trust the user to supply Float triples that make a reasonable triangle, and if you continue to define functions this way then every triangle-related function you write would need similar error checks.
However, if you define a Triangle type, you can check your invariants only once, when a triangle is created, and then all other functions will be guaranteed to receive valid triangles:
module Triangle (Triangle(), mkTriangle, area) where
data Triangle a = Triangle a a a deriving Show
mkTriangle :: (Num a, Ord a) => a -> a -> a -> Either String (Triangle a)
mkTriangle a b c
| a + b <= c = wrong
| a + c <= b = wrong
| b + c <= a = wrong
| otherwise = Right $ Triangle a b c
where wrong = Left "Not a triangle!"
area :: Floating a => Triangle a -> a
area (Triangle a b c) = sqrt (s * (s - a) * (s - b) * (s - c))
where s = (a + b + c) / 2
Here we export the Triangle type, but not its constructor, so that the client must use mkTriangle instead, which can do the required error checking. Then area, and any other triangle functions you write, can omit the checks that they are receiving a valid triangle. This general pattern is called "smart constructors".
Here are two ideas.
Using existing tools, you can generate all the permutations of the arguments and check that they all satisfy a condition. Thus:
import Data.List
triangleArea a b c
| any (\[x, y, z] -> x + y <= z) (permutations [a,b,c])
= error "Not a triangle!"
| otherwise = {- ... -}
This doesn't require writing very much additional code; however, it will search some permutations you don't care about.
Use the usual trick for choosing an element from a list and the left-overs. The zippers function is one I use frequently:
zippers :: [a] -> [([a], a, [a])]
zippers = go [] where
go b [] = []
go b (v:e) = (b, v, e) : go (v:b) e
We can use it to build a function which chooses only appropriate triples of elements:
triples :: [a] -> [(a, a, a)]
triples xs = do
(b1, v1, e1) <- zippers xs
(b2, v2, e2) <- zippers e1
v3 <- b1 ++ b2 ++ e2
return (v1, v2, v3)
Now we can write our guard like in part (1), but it will only consider unique pairings for the addition.
triangleArea a b c
| any (\(x, y, z) -> x + y <= z) (triples [a,b,c])
= error "Not a triangle!"
| otherwise = {- ... -}

Haskell: Implementing a design with an interface and a polymorphic function

Again I'm requesting comments about how a given design should be implemented in Haskell.
Thanks in advance to everyone providing helpful comments. Also I hope this could be an aid to other Haskell novices like me, having a practical sample code.
This time, we have a polymorphic function doSampling (in module Samples) that takes a generic function f and
a list of reals (indexes) and returns a Samples (indexes, values=f(indexes)). We want implement doSampling only once, as it doesn't matter if is f is a Polynomial or a Sinus. For that,
we have introduced an interface Function, and have Polynomial and Sinus types implement it.
The following is the design being implemented:
Edit 1:
There is a debate on the Function interface (class in Haskell). It has been suggested it is not actually necessary, as doSampling may take a "nude" function (Double -> Double) instead.
But, how to do it, if you need some extra state within the nude function (coeffs for a polynomial, amp+freq+phase for a sinus?
Edit 2:
Very good answers by kosmikus and by Chris Taylor. Thanks.
A key idea in both: have
doSampling :: (Double -> Double) -> [Double] -> Samples
This is: it takes a function (Double -> Double) (instead of Function) and list and returns samples.
My intention was to keep the state of Polynomials and Sinuses. That is not regarded in Chris answer, but it is in kosmikus'. On the other hand, the weak point in kosmikus version could be how to extend its Function definition if you don't have access to the source code.
I would also point out:
Chris' idea of encapsulating a polynomial or a sinus into a function (Double -> Double) by means of a factory function mkPolynomial or mkSinus that generates (using currying?) the desired function taking the apropriate parameters. (Although you can't consult the parameters later).
kosmikous' idea of using value to transform (also using currying?) a Function into a (Double -> Double)
Both answers are worth reading as they have other little Haskell tricks to reduce and simplify code.
In sum
Chris answers does not support keeping the state of a Polynomial or of a Sinus
kosmikus answers is not extensible: adding new type of functions (Cosinus ...)
my answer (being verbose) does overcome the previous downsides, and it would allow (this not necessary for the problem) impose Function types to have more associated-functions apart of value (in the sense of how an java-interfaces work).
My own approach
main (usage)
import Polynomial
import Sinus
import Function
import Samples
-- ...............................................................
p1 = Polynomial [1, 0, 0.5] -- p(x) = 1 + 0.5x^2
s1 = Sinus 2 0.5 3 -- f(x) = 2 sin(0.5x + 3)
-- ...............................................................
-- sample p1 from 0 to 5
m1 = doSampling p1 [0, 0.5 .. 5]
m2 = doSampling s1 [0, 0.5 .. 5]
-- ...............................................................
-- main
-- ...............................................................
main = do
putStrLn "Hello"
print $ value p1 2
print $ value s1 (pi/2)
print $ pairs m1
print $ pairs m2
Function
module Function where
-- ...............................................................
-- "class type" : the types belonging to this family of types
-- must implement the following functions:
-- + value : takes a function and a real and returns a real
-- ...............................................................
class Function f where
value :: f -> Double -> Double
-- f is a type variable, this is:
-- f is a type of the Function "family" not an actual function
Samples
module Samples where
import Function
-- ...............................................................
-- Samples: new data type
-- This is the constructor and says it requieres
-- two list, one for the indexes (xs values) and another
-- for the values ( ys = f (xs) )
-- this constructor should not be used, instead use
-- the "factory" function: new_Samples that performs some checks
-- ...............................................................
data Samples = Samples { indexes :: [Double] , values :: [Double] }
deriving (Show)
-- ...............................................................
-- constructor: it checks lists are equal size, and indexes are sorted
new_Samples :: [Double] -> [Double] -> Samples
new_Samples ind val
| (length ind) /= (length val) = samplesVoid
| not $ isSorted ind = samplesVoid
| otherwise = Samples ind val
-- ...............................................................
-- sample a funcion
-- it takes a funcion f and a list of indexes and returns
-- a Samples calculating the values array as f(indexes)
doSampling :: (Function f) => f -> [Double] -> Samples
doSampling f ind = new_Samples ind vals
where
vals = [ value f x | x <- ind ]
-- ...............................................................
-- used as "error" in the construction
samplesVoid = Samples [] []
-- ...............................................................
size :: Samples -> Int
size samples = length (indexes samples)
-- ...............................................................
-- utility function to get a pair (index,value) out of a Samples
pairs :: Samples -> [(Double, Double)]
pairs samples = pairs' (indexes samples) (values samples)
pairs' :: [Double] -> [Double] -> [(Double, Double)]
pairs' [] [] = []
pairs' [i] [v] = [(i,v)]
pairs' (i:is) (v:vs) = (i,v) : pairs' is vs
-- ...............................................................
-- to check whether a list is sorted (<)
isSorted :: (Ord t) => [t] -> Bool
isSorted [] = True
isSorted [e] = True
isSorted (e1:(e2:tail))
| e1 < e2 = isSorted (e2:tail)
| otherwise = False
Sinus
module Sinus where
-- ...............................................................
import Function
-- ...............................................................
-- Sinus: new data type
-- This is the constructor and says it requieres
-- a three reals
-- ...............................................................
data Sinus = Sinus { amplitude :: Double, frequency :: Double, phase :: Double }
deriving (Show)
-- ...............................................................
-- we say that a Sinus is a Function (member of the class Function)
-- and then, how value is implemented
instance Function Sinus where
value s x = (amplitude s) * sin ( (frequency s)*x + (phase s))
Polynomial
module Polynomial where
-- ...............................................................
import Function
-- ...............................................................
-- Polynomial: new data type
-- This is the constructor and says it requieres
-- a list of coefficients
-- ...............................................................
data Polynomial = Polynomial { coeffs :: [Double] }
deriving (Show)
-- ...............................................................
degree :: Polynomial -> Int
degree p = length (coeffs p) - 1
-- ...............................................................
-- we say that a Polynomial is a Function (member of the class Function)
-- and then, how value is implemented
instance Function Polynomial where
value p x = value' (coeffs p) x 1
-- list of coeffs -> x -> pw (power of x) -> Double
value' :: [Double] -> Double -> Double -> Double
value' (c:[]) _ pw = c * pw
value' (c:cs) x pw = (c * pw) + (value' cs x x*pw)
You certainly don't need the Function class. All this heavyweight class, instance, member variable fluff is one of the things that Haskell is designed to avoid. Pure functions can be much more flexible.
Here's a simple way of doing what you want.
type Sample = ([Double], [Double])
newSample xs vs
| isSorted xs && length xs == length vs = (indices, values)
| otherwise = ([], [])
pairs = uncurry zip
doSampling :: (Double -> Double) -> [Double] -> Sample
doSampling f xs = newSample xs (map f xs)
mkPolynomial :: [Double] -> (Double -> Double)
mkPolynomial coefs x = go coefs
where
go [] = 0
go (c:cs) = c + x * go cs
mkSinus :: Double -> Double -> Double -> (Double -> Double)
mkSinus amp freq phase x = amp * sin (freq * x + phase)
p1 = mkPolynomial [1, 0, 0.5] -- 1 + 0.5x^2
s1 = mkSinus 2 0.5 3 -- 2 sin(0.5x + 3)
m1 = doSampling p1 [0, 0.5 .. 5]
m2 = doSampling s1 [0, 0.5 .. 5]
main :: IO ()
main = do
print $ p1 2
print $ s1 (pi/2)
print $ pairs m1
print $ pairs m2
[Expanded my comment on request.]
I'd probably do this roughly as follows:
import Data.Functor
-- Use a datatype rather than a class. Yes, this makes it harder to
-- add new types of functions later, and in turn easier to define new
-- operations. ("expression problem")
data Function =
Sinus { amplitude :: Double, frequency :: Double, phase :: Double }
| Polynomial { coeffs :: [Double] }
deriving (Show)
-- Interpreting a Function as an actual function.
value :: Function -> (Double -> Double)
value (Sinus amp freq ph) x = amp * sin (freq * x + ph)
value (Polynomial cs) x = value' cs x
-- Rewrite value' to not require non-empty lists. This can also be
-- nicely written as a fold.
value' :: [Double] -> Double -> Double
value' [] _ = 0
value' (c:cs) x = c + x * value' cs x
data Samples = Samples { indexes :: [Double] , values :: [Double] }
deriving (Show)
-- Use Maybe to detect error conditions, instead of strange values
-- such as voidSamples.
newSamples :: [Double] -> [Double] -> Maybe Samples
newSamples ind val
| length ind /= length val = Nothing
| not $ isSorted ind = Nothing
| otherwise = Just (Samples ind val)
doSampling :: (Double -> Double) -> [Double] -> Maybe Samples
doSampling f ind = newSamples ind (map f ind)
isSorted :: (Ord t) => [t] -> Bool
isSorted [] = True
isSorted [e] = True
isSorted (e1:e2:es)
| e1 < e2 = isSorted (e2:es)
| otherwise = False
-- This is just zip.
pairs :: Samples -> [(Double, Double)]
pairs (Samples idxs vals) = zip idxs vals
p1 = Polynomial [1, 0, 0.5] -- p(x) = 1 + 0.5x^2
s1 = Sinus 2 0.5 3 -- f(x) = 2 sin(0.5x + 3)
m1 = doSampling (value p1) [0, 0.5 .. 5]
m2 = doSampling (value s1) [0, 0.5 .. 5]
-- The <$> maps over a Maybe.
main = do
putStrLn "Hello"
print $ value p1 2
print $ value s1 (pi/2)
print $ pairs <$> m1
print $ pairs <$> m2

What can be improved on my first haskell program?

Here is my first Haskell program. What parts would you write in a better way?
-- Multiplication table
-- Returns n*n multiplication table in base b
import Text.Printf
import Data.List
import Data.Char
-- Returns n*n multiplication table in base b
mulTable :: Int -> Int -> String
mulTable n b = foldl (++) (verticalHeader n b w) (map (line n b w) [0..n])
where
lo = 2* (logBase (fromIntegral b) (fromIntegral n))
w = 1+fromInteger (floor lo)
verticalHeader :: Int -> Int -> Int -> String
verticalHeader n b w = (foldl (++) tableHeader columnHeaders)
++ "\n"
++ minusSignLine
++ "\n"
where
tableHeader = replicate (w+2) ' '
columnHeaders = map (horizontalHeader b w) [0..n]
minusSignLine = concat ( replicate ((w+1)* (n+2)) "-" )
horizontalHeader :: Int -> Int -> Int -> String
horizontalHeader b w i = format i b w
line :: Int -> Int -> Int -> Int -> String
line n b w y = (foldl (++) ((format y b w) ++ "|" )
(map (element b w y) [0..n])) ++ "\n"
element :: Int -> Int -> Int -> Int -> String
element b w y x = format (y * x) b w
toBase :: Int -> Int -> [Int]
toBase b v = toBase' [] v where
toBase' a 0 = a
toBase' a v = toBase' (r:a) q where (q,r) = v `divMod` b
toAlphaDigits :: [Int] -> String
toAlphaDigits = map convert where
convert n | n < 10 = chr (n + ord '0')
| otherwise = chr (n + ord 'a' - 10)
format :: Int -> Int -> Int -> String
format v b w = concat spaces ++ digits ++ " "
where
digits = if v == 0
then "0"
else toAlphaDigits ( toBase b v )
l = length digits
spaceCount = if (l > w) then 0 else (w-l)
spaces = replicate spaceCount " "
Here are some suggestions:
To make the tabularity of the computation more obvious, I would pass the list [0..n] to the line function rather than passing n.
I would further split out the computation of the horizontal and vertical axes so that they are passed as arguments to mulTable rather than computed there.
Haskell is higher-order, and almost none of the computation has to do with multiplication. So I would change the name of mulTable to binopTable and pass the actual multiplication in as a parameter.
Finally, the formatting of individual numbers is repetitious. Why not pass \x -> format x b w as a parameter, eliminating the need for b and w?
The net effect of the changes I am suggesting is that you build a general higher-order function for creating tables for binary operators. Its type becomes something like
binopTable :: (i -> String) -> (i -> i -> i) -> [i] -> [i] -> String
and you wind up with a much more reusable function—for example, Boolean truth tables should be a piece of cake.
Higher-order and reusable is the Haskell Way.
You don't use anything from import Text.Printf.
Stylistically, you use more parentheses than necessary. Haskellers tend to find code more readable when it's cleaned of extraneous stuff like that. Instead of something like h x = f (g x), write h = f . g.
Nothing here really requires Int; (Integral a) => a ought to do.
foldl (++) x xs == concat $ x : xs: I trust the built-in concat to work better than your implementation.
Also, you should prefer foldr when the function is lazy in its second argument, as (++) is – because Haskell is lazy, this reduces stack space (and also works on infinite lists).
Also, unwords and unlines are shortcuts for intercalate " " and concat . map (++ "\n") respectively, i.e. "join with spaces" and "join with newlines (plus trailing newline)"; you can replace a couple things by those.
Unless you use big numbers, w = length $ takeWhile (<= n) $ iterate (* b) 1 is probably faster. Or, in the case of a lazy programmer, let w = length $ toBase b n.
concat ( (replicate ((w+1)* (n+2)) "-" ) == replicate ((w+1) * (n+2)) '-' – not sure how you missed this one, you got it right just a couple lines up.
You do the same thing with concat spaces, too. However, wouldn't it be easier to actually use the Text.Printf import and write printf "%*s " w digits?
Norman Ramsey gave excellent high-level (design) suggestions; Below are some low-level ones:
First, consult with HLint. HLint is a friendly program that gives you rudimentary advice on how to improve your Haskell code!
In your case HLint gives 7 suggestions. (mostly about redundant brackets)
Modify your code according to HLint's suggestions until it likes what you feed it.
More HLint-like stuff:
concat (replicate i "-"). Why not replicate i '-'?
Consult with Hoogle whenever there is reason to believe that a function you need is already available in Haskell's libraries. Haskell comes with tons of useful functions so Hoogle should come in handy quite often.
Need to concatenate strings? Search for [String] -> String, and voila you found concat. Now go replace all those folds.
The previous search also suggested unlines. Actually, this even better suits your needs. It's magic!
Optional: pause and thank in your heart to Neil M for making Hoogle and HLint, and thank others for making other good stuff like Haskell, bridges, tennis balls, and sanitation.
Now, for every function that takes several arguments of the same type, make it clear which means what, by giving them descriptive names. This is better than comments, but you can still use both.
So
-- Returns n*n multiplication table in base b
mulTable :: Int -> Int -> String
mulTable n b =
becomes
mulTable :: Int -> Int -> String
mulTable size base =
To soften the extra characters blow of the previous suggestion: When a function is only used once, and is not very useful by itself, put it inside its caller's scope in its where clause, where it could use the callers' variables, saving you the need to pass everything to it.
So
line :: Int -> Int -> Int -> Int -> String
line n b w y =
concat
$ format y b w
: "|"
: map (element b w y) [0 .. n]
element :: Int -> Int -> Int -> Int -> String
element b w y x = format (y * x) b w
becomes
line :: Int -> Int -> Int -> Int -> String
line n b w y =
concat
$ format y b w
: "|"
: map element [0 .. n]
where
element x = format (y * x) b w
You can even move line into mulTable's where clause; imho, you should.
If you find a where clause nested inside another where clause troubling, then I suggest to change your indentation habits. My recommendation is to use consistent indentation of always 2 or always 4 spaces. Then you can easily see, everywhere, where the where in the other where is at. ok
Below's what it looks like (with a few other changes in style):
import Data.List
import Data.Char
mulTable :: Int -> Int -> String
mulTable size base =
unlines $
[ vertHeaders
, minusSignsLine
] ++ map line [0 .. size]
where
vertHeaders =
concat
$ replicate (cellWidth + 2) ' '
: map horizontalHeader [0 .. size]
horizontalHeader i = format i base cellWidth
minusSignsLine = replicate ((cellWidth + 1) * (size + 2)) '-'
cellWidth = length $ toBase base (size * size)
line y =
concat
$ format y base cellWidth
: "|"
: map element [0 .. size]
where
element x = format (y * x) base cellWidth
toBase :: Integral i => i -> i -> [i]
toBase base
= reverse
. map (`mod` base)
. takeWhile (> 0)
. iterate (`div` base)
toAlphaDigit :: Int -> Char
toAlphaDigit n
| n < 10 = chr (n + ord '0')
| otherwise = chr (n + ord 'a' - 10)
format :: Int -> Int -> Int -> String
format v b w =
spaces ++ digits ++ " "
where
digits
| v == 0 = "0"
| otherwise = map toAlphaDigit (toBase b v)
spaces = replicate (w - length digits) ' '
0) add a main function :-) at least rudimentary
import System.Environment (getArgs)
import Control.Monad (liftM)
main :: IO ()
main = do
args <- liftM (map read) $ getArgs
case args of
(n:b:_) -> putStrLn $ mulTable n b
_ -> putStrLn "usage: nntable n base"
1) run ghc or runhaskell with -Wall; run through hlint.
While hlint doesn't suggest anything special here (only some redundant brackets), ghc will tell you that you don't actually need Text.Printf here...
2) try running it with base = 1 or base = 0 or base = -1
If you want multiline comments use:
{- A multiline
comment -}
Also, never use foldl, use foldl' instead, in cases where you are dealing with large lists which must be folded. It is more memory efficient.
A brief comments saying what each function does, its arguments and return value, is always good. I had to read the code pretty carefully to fully make sense of it.
Some would say if you do that, explicit type signatures may not be required. That's an aesthetic question, I don't have a strong opinion on it.
One minor caveat: if you do remove the type signatures, you'll automatically get the polymorphic Integral support ephemient mentioned, but you will still need one around toAlphaDigits because of the infamous "monomorphism restriction."

Doing a binary search on some elements in Haskell

I'm trying to complete the last part of my Haskell homework and I'm stuck, my code so far:
data Entry = Entry (String, String)
class Lexico a where
(<!), (=!), (>!) :: a -> a -> Bool
instance Lexico Entry where
Entry (a,_) <! Entry (b,_) = a < b
Entry (a,_) =! Entry (b,_) = a == b
Entry (a,_) >! Entry (b,_) = a > b
entries :: [(String, String)]
entries = [("saves", "en vaut"), ("time", "temps"), ("in", "<`a>"),
("{", "{"), ("A", "Un"), ("}", "}"), ("stitch", "point"),
("nine.", "cent."), ("Zazie", "Zazie")]
build :: (String, String) -> Entry
build (a, b) = Entry (a, b)
diction :: [Entry]
diction = quiksrt (map build entries)
size :: [a] -> Integer
size [] = 0
size (x:xs) = 1+ size xs
quiksrt :: Lexico a => [a] -> [a]
quiksrt [] = []
quiksrt (x:xs)
|(size [y|y <- xs, y =! x]) > 0 = error "Duplicates not allowed."
|otherwise = quiksrt [y|y <- xs, y <! x]++ [x] ++ quiksrt [y|y <- xs, y >! x]
english :: String
english = "A stitch in time save nine."
show :: Entry -> String
show (Entry (a, b)) = "(" ++ Prelude.show a ++ ", " ++ Prelude.show b ++ ")"
showAll :: [Entry] -> String
showAll [] = []
showAll (x:xs) = Main.show x ++ "\n" ++ showAll xs
main :: IO ()
main = do putStr (showAll ( diction ))
The question asks:
Write a Haskell programs that takes
the English sentence 'english', looks
up each word in the English-French
dictionary using binary search,
performs word-for-word substitution,
assembles the French translation, and
prints it out.
The function 'quicksort' rejects
duplicate entries (with 'error'/abort)
so that there is precisely one French
definition for any English word. Test
'quicksort' with both the original
'raw_data' and after having added
'("saves", "sauve")' to 'raw_data'.
Here is a von Neumann late-stopping
version of binary search. Make a
literal transliteration into Haskell.
Immediately upon entry, the Haskell
version must verify the recursive
"loop invariant", terminating with
'error'/abort if it fails to hold. It
also terminates in the same fashion if
the English word is not found.
function binsearch (x : integer) : integer
local j, k, h : integer
j,k := 1,n
do j+1 <> k --->
h := (j+k) div 2
{a[j] <= x < a[k]} // loop invariant
if x < a[h] ---> k := h
| x >= a[h] ---> j := h
fi
od
{a[j] <= x < a[j+1]} // termination assertion
found := x = a[j]
if found ---> return j
| not found ---> return 0
fi
In the Haskell version
binsearch :: String -> Integer -> Integer -> Entry
as the constant dictionary 'a' of type
'[Entry]' is globally visible. Hint:
Make your string (English word) into
an 'Entry' immediately upon entering
'binsearch'.
The programming value of the
high-level data type 'Entry' is that,
if you can design these two functions
over the integers, it is trivial to
lift them to to operate over Entry's.
Anybody know how I'm supposed to go about my binarysearch function?
The instructor asks for a "literal transliteration", so use the same variable names, in the same order. But note some differences:
the given version takes only 1
parameter, the signature he gives
requires 3. Hmmm,
the given version is not recursive, but he asks for a
recursive version.
Another answer says to convert to an Array, but for such a small exercise (this is homework after all), I felt we could pretend that lists are direct access. I just took your diction::[Entry] and indexed into that. I did have to convert between Int and Integer in a few places.
Minor nit: You've got a typo in your english value (bs is a shortcut to binSearch I made):
*Main> map bs (words english)
[Entry ("A","Un"),Entry ("stitch","point"),Entry ("in","<`a>"),Entry ("time","te
mps"),*** Exception: Not found
*Main> map bs (words englishFixed)
[Entry ("A","Un"),Entry ("stitch","point"),Entry ("in","<`a>"),Entry ("time","te
mps"),Entry ("saves","en vaut"),Entry ("nine.","cent.")]
*Main>
A binary search needs random access, which is not possible on a list. So, the first thing to do would probably be to convert the list to an Array (with listArray), and do the search on it.
here's my code for just the English part of the question (I tested it and it works perfectly) :
module Main where
class Lex a where
(<!), (=!), (>!) :: a -> a -> Bool
data Entry = Entry String String
instance Lex Entry where
(Entry a _) <! (Entry b _) = a < b
(Entry a _) =! (Entry b _) = a == b
(Entry a _) >! (Entry b _) = a > b
-- at this point, three binary (infix) operators on values of type 'Entry'
-- have been defined
type Raw = (String, String)
raw_data :: [Raw]
raw_data = [("than a", "qu'un"), ("saves", "en vaut"), ("time", "temps"),
("in", "<`a>"), ("worse", "pire"), ("{", "{"), ("A", "Un"),
("}", "}"), ("stitch", "point"), ("crime;", "crime,"),
("a", "une"), ("nine.", "cent."), ("It's", "C'est"),
("Zazie", "Zazie"), ("cat", "chat"), ("it's", "c'est"),
("raisin", "raisin sec"), ("mistake.", "faute."),
("blueberry", "myrtille"), ("luck", "chance"),
("bad", "mauvais")]
cook :: Raw -> Entry
cook (x, y) = Entry x y
a :: [Entry]
a = map cook raw_data
quicksort :: Lex a => [a] -> [a]
quicksort [] = []
quicksort (x:xs) = quicksort (filter (<! x) xs) ++ [x] ++ quicksort (filter (=! x) xs) ++ quicksort (filter (>! x) xs)
getfirst :: Entry -> String
getfirst (Entry x y) = x
getsecond :: Entry -> String
getsecond (Entry x y) = y
binarysearch :: String -> [Entry] -> Int -> Int -> String
binarysearch s e low high
| low > high = " NOT fOUND "
| getfirst ((e)!!(mid)) > s = binarysearch s (e) low (mid-1)
| getfirst ((e)!!(mid)) < s = binarysearch s (e) (mid+1) high
| otherwise = getsecond ((e)!!(mid))
where mid = (div (low+high) 2)
translator :: [String] -> [Entry] -> [String]
translator [] y = []
translator (x:xs) y = (binarysearch x y 0 ((length y)-1):translator xs y)
english :: String
english = "A stitch in time saves nine."
compute :: String -> [Entry] -> String
compute x y = unwords(translator (words (x)) y)
main = do
putStr (compute english (quicksort a))
An important Prelude operator is:
(!!) :: [a] -> Integer -> a
-- xs!!n returns the nth element of xs, starting at the left and
-- counting from 0.
Thus, [14,7,3]!!1 ~~> 7.

Resources