School wifi partially blocks UDP server - node.js

I am making a multiplayer game that is UDP with node.js (dgram for UDP) and unity as the client (uses c#'s sockets). I originally had a web-socket server, but remade it to be UDP for more competitive response times.
It works perfectly at my house and between my and my friends, but when I try it at school it doesn't work (both LAN and WAN). With non-local hosting nothing works (expected because my school has a whitelist), but with LAN (not localhost) The client sends and initial join packet (exactly the same way of sending as everything else) but then just doesn't send any more packets. My server logs the join message but then the client gets timed out from not sending any more messages after that.
Additionally, the client freezes during the second message and has to be shut down from task manager, which gives me the idea that it's message is being blocked over the network.
Is there a way around my school wifi blocking my server messages, and if there isn't what should I ask my school's tech person for (probably won't work but worth a shot)
Thanks in advance (:

Well, there is nothing you can do to solve certain situations like this by bypassing alone.
If your school remotely controls what protocols (TCP, UDP) that is allowed or blocked, it is better and the right thing to ask them to lift the ban up for traffic between UDP connections.
Also, the firewall can be the main one to blame. By default, many firewalls block UDP traffic because essentially, it is an unsolicited network traffic and may be used to do malicious exploitation since it doesn't care whether or not it has the server's permission to communicated in between and it can't do it doesn't support ACK (Can even cause DDOS in that manner).
More information and references about UDP: Link
However it is more of an overstatement but know that firewall in general do block all incoming traffics by default. TCP is usually accepted, and maybe your school blocked all UDP connections because of the details said above.

Related

How do you create a peer to peer connection without port forwarding or a centeralized server?

I recall reading an article about a proposed way to do this. If I recall correctly, the researchers successfully created a connection to a client on another network without port forwarding by sending HTTP packets to each other (Alice pretends that Bob is an HTTP web server while Bob pretends Alice is a web server).
I'm not sure if that makes sense, but does anyone know where I can find the article or does anyone have any other ideas how to connect two clients together without a central server or port forwarding?
Is it even possible?
Edit: I would know the IPs of both computers and port the program listens on.
It is possible. I see at least 2 parts to your question. (It is not going to be HTTP packet. It is a lot more complex than that.)
First off, I believe you might be talking about a concept called decentralized P2P network. The main idea behind a decentralized peer-to-peer network is the fact that nodes conjoint in such a network will not require central server or group of servers.
As you might already know, most common centralized peer-to-peer networks require such centralized system to exchange and maintain interconnectivity among nodes. The basic concept is such, a new node will connect to one of the main servers to retrieve information about other nodes on the network to maintain its connectivity and availability. The central system gets maintained through servers constantly synchronizing network state, relevant information, and central coordination among each other.
Decentralized network, on the other hand, does not have any structure or predetermined core. This peer-to-peer model is also called unstructured P2P networks. Any new node will copy or inherit original links from the "parent" node and will form its own list over time. There are several categories of decentralization of such unstructured networks.
Interestingly enough, the absence of central command and control system makes it solution of choice for modern malware botnets. A great example could be Storm botnet, which employed so-called Passive P2P Monitor (PPM). PPM was able to locate the infected hosts and build peer list regardless whether or not infected hosts are behind a firewall or NAT. Wikipedia's article Storm botnet is an interesting read. There is also great collaborative study called Towards Complete Node Enumeration in a Peer-to-Peer Botnet, which provides excellent conceptual analysis and techniques employed by Storm botnet network.
Second of all, you might be talking about UDP hole punching. This is a technique or algorithm used to maintain connectivity between 2 hosts behind NATed router/gateway using 3rd comment host by means of a third rendezvous server.
There is a great paper by Bryan Ford, Pyda Srisuresh, and Dan Kegel called Peer-to-Peer Communication Across Network Address Translators.
As answered, a peer-to-peer connection requires establishment of a connection between two (presumably) residential computers, which will necessitate punching holes through both of their firewalls. For a concrete example of hole punching, see pwnat: "The only tool to punch holes through firewalls/NATs without a third party". The process, put simply, goes like this:
The "server" (who doesn't know the client's IP address, but the client knows the server's) pings a very specific ICMP Echo Request packet to 1.2.3.4 every 30 seconds. The NAT, during translation, takes note of this packet in case it gets a response.
The client sends an ICMP Time Exceeded packet to the server, which is a type of packet that usually contains the packet that failed to deliver. The client, knowing in advance the exact packet that the server has been sending to 1.2.3.4, embeds that whole packet in the Data field.
The NAT recognizes the Echo Request packet and happily relays the whole Time Exceeded packet, source IP and all, to the correct user, i.e. the server. Voila, now the server knows the client's IP and port number.
Now that the server knows the address, it begins to continually send UDP packets to the client, despite the fact that the client's NAT did not expect them and will therefore ignore them all.
The client begins sending UDP packets to the server, which will be recognized by the server's NAT as a response to the server's packets and route them appropriately.
Now that the client is sending UDP packets to the server, the server's stream of UDP packets starts getting properly routed by the client's NAT.
And, in 6 easy steps, you have established a UDP connection between a client and a server penetrating two residential firewalls. Take that, ISP!

How would one connect two clients (one of them is browser) behind firewalls

I know p2p software like Skype is using UDP hole punching for that. But what if one of the clients is a web browser which needs to download a file from another client (TCP connection instead of UDP)? Is there any technique for such case?
I can have an intermediate public server which can marry the clients but I can't afford all the traffic between these clients go through this server. The public server can only establish the connection between the clients, like Skype does, and that's all. And this must work via TCP (more exactly, HTTP) to let the downloading client be a web browser.
Both clients must not be required to setup anything in their routers or anything like that.
I'll plan to code this in C/C++ but at the point I'm wondering if this idea is possible at all.
I previously wrote up a very consolidated rough answer on how P2P roughly works with some discussion on various protocols and corresponding open-source libraries. You can read it here.
The reliability of P2P is ultimately a result of how much you invest in it from both a client coding perspective and a service configuration (i.e. signaling servers and relays). You can settle for easy NAT traversal of UDP with no firewall support. Maybe a little more effort and you get TCP connectivity. And you can go "all the way" and have relays that have HTTPS listeners for clients behind the hardest of firewalls to traverse.
As to the answer of your question about firewalls. Depends on how the Firewall is configured. Many firewalls are just glorified NATs with security to restrict traffic to certain ports and block unsolicited incoming connections. Others are extremely restrictive and just allow HTTP/HTTPS traffic over a proxy.
The video conference apps will ultimately fallback to emulating an HTTPS connection over the PC's configured proxy server to port 443 (or 80) of a remote relay server if it can't get directly connected. (And in some cases, the remote client will try to listen on port 80 or port 443 so it can connect direct).
You are absolutely right to assume that having all the clients going through a relay will be expensive to maintain. If your goal is 100% connectivity no matter what type of firewall the clients is behind, some relay solution will have to exist. If you don't support a relay solution, you can invest heavily in getting the direct connectivity to work reliably and only have a small percentage of clients blocked.
Hope this helps.
PeerConnection, part of WebRTC solves this in modern browsers.
Under the hood it uses ICE which is an RFC for NAT hole-punching.
For older browsers, it is possible to use the P2P support in Flash.

Is there a way to test if a computer's connection is firewalled?

I'm writing a piece of P2P software, which requires a direct connection to the Internet. It is decentralized, so there is no always-on server that it can contact with a request for the server to attempt to connect back to it in order to observe if the connection attempt arrives.
Is there a way to test the connection for firewall status?
I'm thinking in my dream land where wishes were horses, there would be some sort of 3rd-party, public, already existent servers to whom I could send some sort of simple command, and they would send a special ping back. Then I could simply listen to see if that arrives and know whether I'm behind a firewall.
Even if such a thing does not exist, are there any alternative routes available?
Nantucket - does your service listen on UDP or TCP?
For UDP - what you are sort of describing is something the STUN protocol was designed for. It matches your definition of "some sort of simple command, and they would send a special ping back"
STUN is a very "ping like" (UDP) protocol for a server to echo back to a client what IP and port it sees the client as. The client can then use the response from the server and compare the result with what it thinks its locally enumerated IP address is. If the server's response matches the locally enumerated IP address, the client host can self determinte that it is directly connected to the Internet. Otherwise, the client must assume it is behind a NAT - but for the majority of routers, you have just created a port mapping that can be used for other P2P connection scenarios.
Further, you can you use the RESPONSE-PORT attribute in the STUN binding request for the server to respond back to a different port. This will effectively allow you to detect if you are firewalled or not.
TCP - this gets a little tricky. STUN can partially be used to determine if you are behind a NAT. Or simply making an http request to whatismyip.com and parsing the result to see if there's a NAT. But it gets tricky, as there's no service on the internet that I know of that will test a TCP connection back to you.
With all the above in mind, the vast majority of broadband users are likely behind a NAT that also acts as a firewall. Either given by their ISP or their own wireless router device. And even if they are not, most operating systems have some sort of minimal firewall to block unsolicited traffic. So it's very limiting to have a P2P client out there than can only work on direct connections.
With that said, on Windows (and likely others), you can program your app's install package can register with the Windows firewall so your it is not blocked. But if you aren't targeting Windows, you may have to ask the user to manually fix his firewall software.
Oh shameless plug. You can use this open source STUN server and client library which supports all of the semantics described above. Follow up with me offline if you need access to a stun service.
You might find this article useful
http://msdn.microsoft.com/en-us/library/aa364726%28v=VS.85%29.aspx
I would start with each os and ask if firewall services are turned on. Secondly, I would attempt the socket connections and determine from the error codes if connections are being reset or timeout. I'm only familiar with winsock coding, so I can't really say much for Linux or mac os.

TCP Servers: Drop Connection, instead of resetting or responding?

Is it possible in Node.JS to "drop" a connection in such a way that
The client never receives a response (200, 404 or otherwise)
The client is never notified that the connection is terminated (never receives connection reset or end of stream)
The server's resources are released (the server should not attempt to maintain the connection in any way)
I am specifically asking about Node.JS HTTP Servers (which are really just complex TCP servers) on Solaris., but if there are cases on other OSes (Windows, Linux) or programming languages (C/C++, Java) that permit this, I am interested.
Why do I want this?
To annoy or slow down (possibly single-threaded) robots such as phpMyAdmin Probe.
I know this is not really something that matters, but these types of questions can better help me learn the boundaries of my programs.
I am aware that the client host is likely to re-transmit the packets of the connection since I am never sending reset.
These are not possible in a generic TCP stack (vs. your own custom TCP stack). The reasons are:
Closing a socket sends a RST
Even if you avoid sending a RST, the client continues to think the connection is open while the server has closed the connection. If the client sends any packet on this connection, the server is going to send a RST.
You may want to explore firewalling these robots and block / rate limit their IP addresses with something like iptables (linux) or the equivalent on solaris.
closing a connection should NOT send an RST. There is a 3 way tear down process.

NAT, P2P and Multiplayer

How can an application be designed such that two peers can communicate directly with each other (assuming both know each other's IPs), but without outgoing connections? That's, no ports will be opened. Bitorrent for example does it, but multiplayer games (as far as I know) require port forwarding.
I'm not sure what you mean by No Outgoing Connections, I'm going to assume like everyone else you meant no Incoming Connections (they are behind a NAT/FW/etc).
The most common one mentioned so far is UPNP, which in this context is a protocol that allows you as a computer to talk to the Gateway and say forward me this port because I want someone on the outside to be able to talk to me. UPNP is also designed for other things, but this is the common thing for home networking (Actually it's one of many definitions).
There are also more common and slightly more reliable ways if you don't own the network. The most common is called STUN but if I recall correctly there are a few variants. Basically you use a third party server that allows incoming connections to try and coordinate a communication channel. Basically, what you do is send a UDP packet to you're peer, which will open up you're NAT for a response, but gets dropped on you're peer's NAT (since no forwarding rule exists yet). Through the connection to the intermediary, they are then told to do the same, which now opens up their NAT, and matches the existing rule in you're NAT. Now the communications can proceed. Their is a variant of this which will allow a TCP/IP connection as well by sending SYN and SYN-ACK messages with some coordination.
The Wikipedia articles I've linked to has links to the relevant rfc's for these protocols on precisely how they work. Essentially it comes down to, there isn't an easy answer, as this is a very network centric problem.
You need a "meeting point" in the network somewhere: the participants "meet" at a "gateway" of some sort and the said "gateway function" takes care of the forwarding.
At least that's one way of doing it: I won't try to comment on the details of Bittorrent... I am sure you can google for links.
UPNP dealt with this mostly in the recent years, but the need to open ports is because the application has been coded to listen on a specific port for a response.
Ports beneath 1024 are called "registered" because they've been assigned a port number because a company paid for it. This doesn't mean you couldn't use port 53 for a webserver or SSH, just that most will assume when they see it that they are dealing with DNS. Ports above 1024 are unregistered, so there's no association - your web browser, be it Internet Explorer/Firefox/etc, is using an unregistered port to send the request to the StackOverflow webserver(s) on port 80. You can use:
netstat -a
..on windows hosts to see what network connections are currently established, including the port involved.
UPNP can be used to negotiate with the router to open and forward a port to your application. Even bit-torrent needs at least one of the peers to have an open port to enable p2p connections. There is no need for both peers to have an open port however, since they both communicate with the same server (tracker) that lets them negotiate and determine who has an open port.
An alternative is an echo-server / relay-server somewhere on the internet that both peers trust, and have that relay all the traffic.
The "problem" with this solution is that the echo-server needs to have lots of bandwidth to accomodate all connected peers since it relays all the traffic rather than establish p2p connections.
Check out EchoWare: http://www.echogent.com/tech.htm

Resources