Create a percentage in CNN - conv-neural-network

How can I print percentage in CNN if the case is I want to predict something like "how well the training data match the test data" with percentage appearing in the output.

Do you mean percentage of predicted labels matching the actual labels, in training or testing a Convolutional Neural Network? Because "how well the training data match the test data" does not seem to make sense. Training data and test data are not supposed to be the same, or even have any overlap. The given data-set is divided in to 2 parts: training set (e.g. 70 %) and test set (e.g. 30 %).
Depending on the deep learning platform you are using (e.g. TensorFlow or PyTorch), you may be able to display the accuracy (percentage of predicted labels that match the actual labels) in every epoch of training, and also for testing. Try checking sample code on https://www.tensorflow.org/ or https://pytorch.org/.

Related

Multilabel text classification with BERT and highly imbalanced training data

I'm trying to train a multilabel text classification model using BERT. Each piece of text can belong to 0 or more of a total of 485 classes. My model consists of a dropout layer and a linear layer added on top of the pooled output from the bert-base-uncased model from Hugging Face. The loss function I'm using is the BCEWithLogitsLoss in PyTorch.
I have millions of labeled observations to train on. But the training data are highly unbalanced, with some labels appearing in less than 10 observations and others appearing in more than 100K observations! I'd like to get a "good" recall.
My first attempt at training without adjusting for data imbalance produced a micro recall rate of 70% (good enough) but a macro recall rate of 45% (not good enough). These numbers indicate that the model isn't performing well on underrepresented classes.
How can I effectively adjust for the data imbalance during training to improve the macro recall rate? I see we can provide label weights to BCEWithLogitsLoss loss function. But given the very high imbalance in my data leading to weights in the range of 1 to 1M, can I actually get the model to converge? My initial experiments show that a weighted loss function is going up and down during training.
Alternatively, is there a better approach than using BERT + dropout + linear layer for this type of task?
In your case it might be helpful to balance the labels in the training data. You have a lot of data, so you could afford to loose a part of it by balancing. But before you do this, I recommend to read this answer about balancing classes in traing data.
If you really only care about recall, you could try to tune your model maximizing recall.

Data augmentation affects convergence speed

Data augmentation is surely a great regularization method, and it improves my accuracy on the unseen test set. However, I do not understand why it reduces the convergence speed of the network? I know each epoch takes a longer time to train since image transformations are applied on the fly. But why does it affect the convergence? For my current setup, the network hits a 100% training accuracy after 5 epochs without data augmentation (and clearly overfits) - with data augmentation, it takes 23 epochs to hit 95% training accuracy and never seems to hit 100%.
Any links to research papers or comments on the reasonings behind this?
I guess you are evaluating accuracy on the train set, right? And it is a mistake...
Without augmentation your network simply overfits. You have a predefined number of images, for instance, 1000, and your network during training can easily memorize dataset labels. And you are evaluating the model on the fixed (not augmented) dataset.
When you are training your network with data augmentation, basically, you are training a model on a dataset of infinite size. You are doing augmentation on the fly, which means that the model "sees" new images every time, and it cannot memorize them perfectly with 100% accuracy. And you are evaluating the model on the augmented (infinite) dataset.
When you train your model with and without augmentation, you evaluate it on the different datasets, so it is not correct to compare their accuracy.
Piece of advice:
Do not look at train set accuracy, it is simply misleading when you use augmentations. Instead - evaluate your model on the test set (or validation set), which is not augmented. By doing this - you'll see the real accuracy increase for your model.
P.S. If you want to find out more about image augmentaitons, I really recommend you to check this guide - https://notrocketscience.blog/complete-guide-to-data-augmentation-for-computer-vision/

Large dataset - ANN

I am trying to classify around 400K data with 13 attributes. I have used python sklearn's SVM package, but it didn't work, and then I learned that SVM's are not suitable for large dataset classification. Then I used the (sklearn) ANN using the following MLPClassifier:
MLPClassifier(solver='adam', alpha=1e-5, random_state=1,activation='relu', max_iter=500)
and trained the system using 200K samples, and tested the model on the remaining ones. The classification worked well. However, my concern is that the system is over trained or overfit. Can you please guide me on the number of hidden layers and node sizes to make sure that there is no overfit? (I have learned that the default implementation has 100 hidden neurons. Is it ok to use the default implementation as is?)
To know if your are overfitting you have to compute:
Training set accuracy
Test set accuracy
Once you have calculated this scores, compare it. If training set score is much better than your test set score, then you are overfitting. This means that your model is "memorizing" your data, instead of learning from it to make future predictions.
If you are overfitting with Neuronal Networks you probably have to reduce the number of layers and reduce the number of neurons per layer. There isn't any strict rule that says the number of layer or neurons you need depending on you dataset size. Every dataset can behaves completely different with the same dataset size.
So, to conclude, if you are overfitting, you would have to evaluate your model accuracy using different parameters of layers and number of neurons, and, then, observe with which values you obtain the best results. There are some methods you can use to find the best parameters, is like gridsearchCV.

What do sklearn.cross_validation scores mean?

I am working on a time-series prediction problem using GradientBoostingRegressor, and I think I'm seeing significant overfitting, as evidenced by a significantly better RMSE for training than for prediction. In order to examine this, I'm trying to use sklearn.model_selection.cross_validate, but I'm having problems understanding the result.
First: I was calculating RMSE by fitting to all my training data, then "predicting" the training data outputs using the fitted model and comparing those with the training outputs (the same ones I used for fitting). The RMSE that I observe is the same order of magnitude the predicted values and, more important, it's in the same ballpark as the RMSE I get when I submit my predicted results to Kaggle (although the latter is lower, reflecting overfitting).
Second, I use the same training data, but apply sklearn.model_selection.cross_validate as follows:
cross_validate( predictor, features, targets, cv = 5, scoring = "neg_mean_squared_error" )
I figure the neg_mean_squared_error should be the square of my RMSE. Accounting for that, I still find that the error reported by cross_validate is one or two orders of magnitude smaller than the RMSE I was calculating as described above.
In addition, when I modify my GradientBoostingRegressor max_depth from 3 to 2, which I would expect reduces overfitting and thus should improve the CV error, I find that the opposite is the case.
I'm keenly interested to use Cross Validation so I don't have to validate my hyperparameter choices by using up Kaggle submissions, but given what I've observed, I'm not clear that the results will be understandable or useful.
Can someone explain how I should be using Cross Validation to get meaningful results?
I think there is a conceptual problem here.
If you want to compute the error of a prediction you should not use the training data. As the name says theese type of data are used only in training, for evaluating accuracy scores you ahve to use data that the model has never seen.
About cross-validation I can tell that it's an approach to find the best training/testing set. The process is as follows: you divide your data into n groups and you do various iterating changing the testing group you pick. If you have n groups you will do n iteration and each time the training and testing set will be different. It's more understamdable in the image below.
Basically what you should do it's kile this:
Train the model using months from 0 to 30 (for example)
See the predictions made with months from 31 to 35 as input.
If the input has to be the same lenght divide feature in half (should be 17 months).
I hope I understood correctly, othewise comment.

How to improve validation accuracy in training convolutional neural network?

I am training a CNN model(made using Keras). Input image data has around 10200 images. There are 120 classes to be classified. Plotting the data frequency, I can see that sample data for every class is more or less uniform in terms of distribution.
Problem I am facing is loss plot for training data goes down with epochs but for validation data it first falls and then goes on increasing. Accuracy plot reflects this. Accuracy for training data finally settles down at .94 but for validation data its around 0.08.
Basically its case of over fitting.
I am using learning rate of 0.005 and dropout of .25.
What measures can I take to get better accuracy for validation? Is it possible that sample size for each class is too small and I may need data augmentation to have more data points?
Hard to say what could be the reason. First you can try classical regularization techniques like reducing the size of your model, adding dropout or l2/l1-regularizers to the layers. But this is more like randomly guessing the models hyperparameters and hoping for the best.
The scientific approach would be to look at the outputs for your model and try to understand why it produces these outputs and obviously checking your pipeline. Did you had a look at the outputs (are they all the same)? Did you preprocess the validation data the same way as the training data? Did you made a stratified train/test-split, i.e. keeping the class distribution the same in both sets? Is the data shuffles when you feed it to your model?
In the end you have about ~85 images per class which is really not a lot, compare CIFAR-10 resp. CIFAR-100 with 6000/600 images per class or ImageNet with 20k classes and 14M images (~500 images per class). So data augmentation could be beneficial as well.

Resources