How to resolve this mistake in Petersons algorithm for process synchronization - multithreading

Information
I was reading the book of E. Tanenbaum about Modern operating systems and there was a code snippet that was introducing Petersons algorithm for process synchronization which is implemented with software.
Here's the snippet.
```
#define FALSE 0
#define TRUE 1
#define N 2 /* number of processes */
int turn; /* whose turn is it? */
int interested[N]; /* all values initially 0 (FALSE) */
void enter_region(int process) /* process is 0 or 1 */
{
int other; /* number of the other process */
other = 1 − process; /* the opposite of process */
interested[process] = TRUE; /* show that you are interested */
turn = process; /*set flag*/
while (turn == process && interested[other] == TRUE); /* null statement */
}
void leave_region(int process) { /* process: who is leaving */
interested[process] = FALSE; /* indicate departure from critical region */
}
```
The question is
Isn't there a mistake? [Edit] Must'nt it be turn = other or maybe there is another mistake.
This version of algorithm violates rules of mutual exclusion.
[Edit]
I think this version is violating the rules of mutual exclusion. As if first process sets the interested variable than stops and other process runs, second process can idle wait after setting his interested and turn variables without any need as there is no any process in critical section.
Any answer and help is appreciated. Thanks!

If process 0 sets interested[0], and then process 1 runs enter_region up until the loop, then process 0 will be able to exit the loop because turn == process is no longer true for it. turn, in this case, really means "turn to wait", and protects against exactly the situation you described. In contrast, if the code did turn = other then process 0 would not be able to exit the loop until process 1 started waiting.

Related

where is the context switching finally happening in the linux kernel source?

In linux, process scheduling occurs after all interrupts (timer interrupt, and other interrupts) or when a process relinquishes CPU(by calling explicit schedule() function). Today I was trying to see where context switching occurs in linux source (kernel version 2.6.23)
(I think I checked this several years ago but I'm not sure now..I was looking at sparc arch then.)
I looked it up from the main_timer_handler(in arch/x86_64/kernel/time.c), but couldn't find it.
Finally I found it in ./arch/x86_64/kernel/entry.S.
ENTRY(common_interrupt)
XCPT_FRAME
interrupt do_IRQ
/* 0(%rsp): oldrsp-ARGOFFSET */
ret_from_intr:
cli
TRACE_IRQS_OFF
decl %gs:pda_irqcount
leaveq
CFI_DEF_CFA_REGISTER rsp
CFI_ADJUST_CFA_OFFSET -8
exit_intr:
GET_THREAD_INFO(%rcx)
testl $3,CS-ARGOFFSET(%rsp)
je retint_kernel
...(omit)
GET_THREAD_INFO(%rcx)
jmp retint_check
#ifdef CONFIG_PREEMPT
/* Returning to kernel space. Check if we need preemption */
/* rcx: threadinfo. interrupts off. */
ENTRY(retint_kernel)
cmpl $0,threadinfo_preempt_count(%rcx)
jnz retint_restore_args
bt $TIF_NEED_RESCHED,threadinfo_flags(%rcx)
jnc retint_restore_args
bt $9,EFLAGS-ARGOFFSET(%rsp) /* interrupts off? */
jnc retint_restore_args
call preempt_schedule_irq
jmp exit_intr
#endif
CFI_ENDPROC
END(common_interrupt)
At the end of the ISR is a call to preempt_schedule_irq! and the preempt_schedule_irq is defined in kernel/sched.c as below(it calls schedule() in the middle).
/*
* this is the entry point to schedule() from kernel preemption
* off of irq context.
* Note, that this is called and return with irqs disabled. This will
* protect us against recursive calling from irq.
*/
asmlinkage void __sched preempt_schedule_irq(void)
{
struct thread_info *ti = current_thread_info();
#ifdef CONFIG_PREEMPT_BKL
struct task_struct *task = current;
int saved_lock_depth;
#endif
/* Catch callers which need to be fixed */
BUG_ON(ti->preempt_count || !irqs_disabled());
need_resched:
add_preempt_count(PREEMPT_ACTIVE);
/*
* We keep the big kernel semaphore locked, but we
* clear ->lock_depth so that schedule() doesnt
* auto-release the semaphore:
*/
#ifdef CONFIG_PREEMPT_BKL
saved_lock_depth = task->lock_depth;
task->lock_depth = -1;
#endif
local_irq_enable();
schedule();
local_irq_disable();
#ifdef CONFIG_PREEMPT_BKL
task->lock_depth = saved_lock_depth;
#endif
sub_preempt_count(PREEMPT_ACTIVE);
/* we could miss a preemption opportunity between schedule and now */
barrier();
if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
goto need_resched;
}
So I found where the scheduling occurs, but my question is, "where in the source code does the actually context switching happen?". For context switching, the stack, mm settings, registers should be switched and the PC (program counter) should be set to the new task. Where can I find the source code for that? I followed schedule() --> context_switch() --> switch_to(). Below is the context_switch function which calls switch_to() function.(kernel/sched.c)
/*
* context_switch - switch to the new MM and the new
* thread's register state.
*/
static inline void
context_switch(struct rq *rq, struct task_struct *prev,
struct task_struct *next)
{
struct mm_struct *mm, *oldmm;
prepare_task_switch(rq, prev, next);
mm = next->mm;
oldmm = prev->active_mm;
/*
* For paravirt, this is coupled with an exit in switch_to to
* combine the page table reload and the switch backend into
* one hypercall.
*/
arch_enter_lazy_cpu_mode();
if (unlikely(!mm)) {
next->active_mm = oldmm;
atomic_inc(&oldmm->mm_count);
enter_lazy_tlb(oldmm, next);
} else
switch_mm(oldmm, mm, next);
if (unlikely(!prev->mm)) {
prev->active_mm = NULL;
rq->prev_mm = oldmm;
}
/*
* Since the runqueue lock will be released by the next
* task (which is an invalid locking op but in the case
* of the scheduler it's an obvious special-case), so we
* do an early lockdep release here:
*/
#ifndef __ARCH_WANT_UNLOCKED_CTXSW
spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
#endif
/* Here we just switch the register state and the stack. */
switch_to(prev, next, prev); // <---- this line
barrier();
/*
* this_rq must be evaluated again because prev may have moved
* CPUs since it called schedule(), thus the 'rq' on its stack
* frame will be invalid.
*/
finish_task_switch(this_rq(), prev);
}
The 'switch_to' is an assembly code under include/asm-x86_64/system.h.
my question is, is the processor switched to the new task inside the 'switch_to()' function? Then, are the codes 'barrier(); finish_task_switch(this_rq(), prev);' run at some other time later? By the way, this was in interrupt context, so if to_switch() is just the end of this ISR, who finishes this interrupt? Or, if the finish_task_switch runs, how is CPU occupied by the new task?
I would really appreciate if someone could explain and clarify things to me.
Almost all of the work for a context switch is done by the normal SYSCALL/SYSRET mechanism. The process pushes its state on the stack of "current" the current running process. Calling do_sched_yield just changes the value of current, so the return just restores the state of a different task.
Preemption gets trickier, since it doesn't happen at a normal boundary. The preemption code has to save and restore all of the task state, which is slow. That's why non-RT kernels avoid doing preemption. The arch-specific switch_to code is what saves all the prev task state and sets up the next task state so that SYSRET will run the next task correctly. There are no magic jumps or anything in the code, it is just setting up the hardware for userspace.

Is there a race condition when manually put process into sleep

When I read ldd3 chapter 6, I was confused by the codes which is shown below:
while (spacefree(dev) == 0) { /* full */ DEFINE_WAIT(wait);
up(&dev->sem);
if (filp->f_flags & O_NONBLOCK)
return -EAGAIN;
PDEBUG("\"%s\" writing: going to sleep\n",current->comm);
prepare_to_wait(&dev->outq, &wait, TASK_INTERRUPTIBLE);
if (spacefree(dev) == 0)
schedule( );
finish_wait(&dev->outq, &wait);
if (signal_pending(current))
return -ERESTARTSYS; /* signal: tell the fs layer to handle it */
if (down_interruptible(&dev->sem))
return -ERESTARTSYS;
}
Isn't there a race condition between the if (spacefree(dev) == 0) and schedule(). If the spacefree(dev) function returns non-zero when the if statement just finished, maybe the process will lost the only chance to be wake up. Can anyone tell me what is the mechanism behind these codes?
By the way, I found another code snippet in Linux Kernel Development which is similar to the one above. Some details, however, is different.
DEFINE_WAIT(wait);
add_wait_queue(q, &wait);
while (!condition) { /* condition is the event that we are waiting for */
prepare_to_wait(&q, &wait, TASK_INTERRUPTIBLE);
if (signal_pending(current))
/* handle signal */
schedule();
}
finish_wait(&q, &wait);
The very difference is the addition of add_wait_queue() function which doesn't appear in the first code snippet.
The second difference is that in the second snippet's while statement, there is no condition test before schedule(). Why?
The third difference is the position of signal_pending() function, one is before the schedule(), another is after.
Why there exists such differences?
From LDD3 chapter 6:
"By checking our condition after setting the process state, we are covered against all
possible sequences of events. If the condition we are waiting for had come about
before setting the process state, we notice in this check and not actually sleep. If the
wakeup happens thereafter, the process is made runnable whether or not we have
actually gone to sleep yet."

How do I draw a state diagram for a suspension-queue semaphore?

Here is the question:
Each process may be in different states and different events cause a process to transfer from one state to another; this can be represented using a state diagram. Use a state diagram to explain how a suspension-queue semaphore may be implemented. [10 marks]
Is my diagram correct, or have I misunderstood the question?
http://i.imgur.com/dC5RG6o.jpg
It is my understanding that suspended-queue semaphores maintain a list of blocked processes from which to (perhaps randomly) select a process to unblock when the current process has finished its critical section. Hence the waiting state in the state diagram.
pseudocode of suspended_queue_semaphore.
struct suspended_queue_semaphore
{
int count;
queueType queue;
};
void up(suspended_queue_semaphore s)
{
if (s.count == 0)
{
/* place this process in s.queue /*
/* block this process */
}
else
{
s.count = s.count - 1;
}
}
void down(suspended_queue_semaphore s)
{
if (s.queue is not empty)
{
/* remove a process from s.queue using FIFO */
/* unblock the process */
}
else
{
s.count = s.count + 1;
}
}
Is the state diagram for the process or the semaphore, and which semaphore are you talking about.
In the simplest semaphore: a binary semaphore (i.e. only one process can run) with operations wait() i.e. request to access shared resource and signal() i.e. finished accessing resource.
A state diagram for the process has only two states: Queued (Q) and Running (R) in addition to the Start and Terminate state.
The state diagram would be:
START = wait.CAN_RUN
CAN_RUN = suspend.QUEUED + run.RUNNING
QUEUED = run.RUNNING
RUNNING = signal.END
The semaphore has two states Empty and Full
A state diagram for the semaphore would be:
START = EMPTY
EMPTY = wait.RUN_PROCCESS + RUN_PROCESS
RUN_PROCESS = run.FULL
FULL = signal.EMPTY + wait.SUSPEND_PROCESS
SUSPEND_PROCESS = suspend.FULL
Edit: Fixed notation of state diagrams (was backwards sorry my process calculus is rusty) and added internal processes CAN_RUN, SUSPEND_PROCESS and RUN_PROCESS; and internal messages run and suspend.
Explanation:
The process calls the 'wait' method (up in your pseudo code) and goes to the CAN_RUN state, from there it can either start RUNNING or become QUEUED based on whether it gets a 'run' or 'suspend' message. If QUEUED it can start RUNNING when it receives a 'run' message. If RUNNING it uses 'signal' (down in your pseudo code) before finishing.
The semaphore starts EMPTY, if it gets a 'wait' it goes into RUN_PROCESS issues a 'run' message and becomes FULL. Once FULL any further 'wait' will send it to the SUSPEND_PROCESS state where it issues a 'suspend' to the process. When a 'signal' is received it goes back to EMPTY and it can remain there or go to RUN_PROCESS again based on whether the queue is empty or not (I did not model these internal states, nor did I model the queue as a system.)

Providing Concurrency Between Pthreads

I am working on multithread programming and I am stuck on something.
In my program there are two tasks and two types of robots for carrying out the tasks:
Task 1 requires any two types of robot and
task 2 requires 2 robot1 type and 2 robot2 type.
Total number of robot1 and robot2 and pointers to these two types are given for initialization. Threads share these robots and robots are reserved until a thread is done with them.
Actual task is done in doTask1(robot **) function which takes pointer to a robot pointer as parameter so I need to pass the robots that I reserved. I want to provide concurrency. Obviously if I lock everything it will not be concurrent. robot1 is type of Robot **. Since It is used by all threads before one thread calls doTask or finish it other can overwrite robot1 so it changes things. I know it is because robot1 is shared by all threads. Could you explain how can I solve this problem? I don't want to pass any arguments to thread start routine.
rsc is my struct to hold number of robots and pointers that are given in an initialization function.
void *task1(void *arg)
{
int tid;
tid = *((int *) arg);
cout << "TASK 1 with thread id " << tid << endl;
pthread_mutex_lock (&mutexUpdateRob);
while (rsc->totalResources < 2)
{
pthread_cond_wait(&noResource, &mutexUpdateRob);
}
if (rsc->numOfRobotA > 0 && rsc->numOfRobotB > 0)
{
rsc->numOfRobotA --;
rsc->numOfRobotB--;
robot1[0] = &rsc->robotA[counterA];
robot1[1] = &rsc->robotB[counterB];
counterA ++;
counterB ++;
flag1 = true;
rsc->totalResources -= 2;
}
pthread_mutex_unlock (&mutexUpdateRob);
doTask1(robot1);
pthread_mutex_lock (&mutexUpdateRob);
if(flag1)
{
rsc->numOfRobotA ++;
rsc->numOfRobotB++;
rsc->totalResources += 2;
}
if (totalResource >= 2)
{
pthread_cond_signal(&noResource);
}
pthread_mutex_unlock (&mutexUpdateRob);
pthread_exit(NULL);
}
If robots are global resources, threads should not dispose of them. It should be the duty of the main thread exit (or cleanup) function.
Also, there sould be a way for threads to locate unambiguously the robots, and to lock their use.
The robot1 array seems to store the robots, and it seems to be a global array. However:
its access is not protected by a mutex (pthread_mutex_t), it seems now that you've taken care of that.
Also, the code in task1 is always modifying entries 0 and 1 of this array. If two threads or more execute that code, the entries will be overwritten. I don't think that it is what you want. How will that array be used afterwards?
In fact, why does this array need to be global?
The bottom line is this: as long as this array is shared by threads, they will have problems working concurrently. Think about it this way:
You have two companies using robots to work, but they're using the same truck (robot1) to move the robots around. How are these two companies supposed to function properly, and efficiently with only one truck?

Linux synchronization with FIFO waiting queue

Are there locks in Linux where the waiting queue is FIFO? This seems like such an obvious thing, and yet I just discovered that pthread mutexes aren't FIFO, and semaphores apparently aren't FIFO either (I'm working on kernel 2.4 (homework))...
Does Linux have a lock with FIFO waiting queue, or is there an easy way to make one with existing mechanisms?
Here is a way to create a simple queueing "ticket lock", built on pthreads primitives. It should give you some ideas:
#include <pthread.h>
typedef struct ticket_lock {
pthread_cond_t cond;
pthread_mutex_t mutex;
unsigned long queue_head, queue_tail;
} ticket_lock_t;
#define TICKET_LOCK_INITIALIZER { PTHREAD_COND_INITIALIZER, PTHREAD_MUTEX_INITIALIZER }
void ticket_lock(ticket_lock_t *ticket)
{
unsigned long queue_me;
pthread_mutex_lock(&ticket->mutex);
queue_me = ticket->queue_tail++;
while (queue_me != ticket->queue_head)
{
pthread_cond_wait(&ticket->cond, &ticket->mutex);
}
pthread_mutex_unlock(&ticket->mutex);
}
void ticket_unlock(ticket_lock_t *ticket)
{
pthread_mutex_lock(&ticket->mutex);
ticket->queue_head++;
pthread_cond_broadcast(&ticket->cond);
pthread_mutex_unlock(&ticket->mutex);
}
If you are asking what I think you are asking the short answer is no. Threads/processes are controlled by the OS scheduler. One random thread is going to get the lock, the others aren't. Well, potentially more than one if you are using a counting semaphore but that's probably not what you are asking.
You might want to look at pthread_setschedparam but it's not going to get you where I suspect you want to go.
You could probably write something but I suspect it will end up being inefficient and defeat using threads in the first place since you will just end up randomly yielding each thread until the one you want gets control.
Chances are good you are just thinking about the problem in the wrong way. You might want to describe your goal and get better suggestions.
I had a similar requirement recently, except dealing with multiple processes. Here's what I found:
If you need 100% correct FIFO ordering, go with caf's pthread ticket lock.
If you're happy with 99% and favor simplicity, a semaphore or a mutex can do really well actually.
Ticket lock can be made to work across processes:
You need to use shared memory, process-shared mutex and condition variable, handle processes dying with the mutex locked (-> robust mutex) ... Which is a bit overkill here, all I need is the different instances don't get scheduled at the same time and the order to be mostly fair.
Using a semaphore:
static sem_t *sem = NULL;
void fifo_init()
{
sem = sem_open("/server_fifo", O_CREAT, 0600, 1);
if (sem == SEM_FAILED) fail("sem_open");
}
void fifo_lock()
{
int r;
struct timespec ts;
if (clock_gettime(CLOCK_REALTIME, &ts) == -1) fail("clock_gettime");
ts.tv_sec += 5; /* 5s timeout */
while ((r = sem_timedwait(sem, &ts)) == -1 && errno == EINTR)
continue; /* Restart if interrupted */
if (r == 0) return;
if (errno == ETIMEDOUT) fprintf(stderr, "timeout ...\n");
else fail("sem_timedwait");
}
void fifo_unlock()
{
/* If we somehow end up with more than one token, don't increment the semaphore... */
int val;
if (sem_getvalue(sem, &val) == 0 && val <= 0)
if (sem_post(sem)) fail("sem_post");
usleep(1); /* Yield to other processes */
}
Ordering is almost 100% FIFO.
Note: This is with a 4.4 Linux kernel, 2.4 might be different.

Resources