Rotation function in Quaternions - graphics

Book "Mathematics for 3D Game Programming and Computer Graphcis(Third Edition)"
Chapter 4 Transform 4.6 Quaterions
it mentions below
"Extending the function φ to a mapping from H onto itself by requiring that
φ(s + v) = s + φ(v) allows us to rewrite Equation"
HERE , i don't know why "φ(s + v) = s + φ(v)" is requirement when the rotation function extending to H ?
anyone could show me some idea or documents to explain it ??
Thanks advance !

This is because the author want to characterize H as a "split" field of scalar and vector in R^3. He denote scalar with letter "s" and vector with letter "v". So members of H have the "split" form s + v. Note the + here is similar to complex numbers sum in the sense that what you really have is a pair (s, v) of elements from different fields.
Since the function φ has been defined on vectors so far, it can be applied only to v. So if you want to apply φ to members of H you need the definition φ(s + v) = s + φ(v). This is similar to the concept of overloading a function in C++ so you have two versions of the function with the same name but they act differently depending on the argument.

Related

Convert DFA to RE

I constructed a finite automata for the language L of all strings made of the symbols 0, 1 and 2 (Σ = {0, 1, 2}) where the last symbol is not smaller than the first symbol. E.g., the strings 0, 2012, 01231 and 102 are in the language, but 10, 2021 and 201 are not in the language.
Then from that an GNFA so I can convert to RE.
My RE looks like this:
(0(0+1+2)* )(1(0(1+2)+1+2)* )(2((0+1)2+2))*)
I have no idea if this is correct, as I think I understand RE but not entirely sure.
Could someone please tell me if it’s correct and if not why?
There is a general method to convert any DFA into a regular expression, and is probably what you should be using to solve this homework problem.
For your attempt specifically, you can tell whether an RE is incorrect by finding a word that should be in the language, but that your RE doesn't accept, or a word that shouldn't be in the language that the RE does accept. In this case, the string 1002 should be in the language, but the RE doesn't match it.
There are two primary reasons why this string isn't matched. The first is that there should be a union rather than a concatenation between the three major parts of the language (words starting with 0, 1 and 2, respectively:
(0(0+1+2)*) (1(0(1+2)+1+2)*) (2((0+1)2+2))*) // wrong
(0(0+1+2)*) + (1(0(1+2)+1+2)*) + (2((0+1)2+2))*) // better
The second problem is that in the 1 and 2 cases, the digits smaller than the starting digit need to be repeatable:
(1(0 (1+2)+1+2)*) // wrong
(1(0*(1+2)+1+2)*) // better
If you do both of those things, the RE will be correct. I'll leave it as an exercise for you to follow that step for the 2 case.
The next thing you can try is find a way to make the RE more compact:
(1(0*(1+2)+1+2)*) // verbose
(1(0*(1+2))*) // equivalent, but more compact
This last step is just a matter of preference. You don't need the trailing +1+2 because 0* can be of zero length, so 0*(1+2) covers the +1+2 case.
You can use an algorithm but this DFA might be easy enough to convert as a one-off.
First, note that if the first symbol seen in the initial state is 0, you transition to state A and remain there. A is accepting. This means any string beginning with 0 is accepted. Thus, our regular expression might as well have a term like 0(0+1+2)* in it.
Second, note that if the first symbol seen in the initial state is 1, you transition to state B and remain in states B and D from that point on. You only leave B if you see 0 and you stay out of B as long as you keep seeing 0. The only way to end on D is if the last symbol you saw was 0. Therefore, strings beginning with 1 are accepted if and only if the strings don't end in 0. We can have a term like 1(0+1+2)*(1+2) in our regular expression as well to cover these cases.
Third, note that if the first symbol seen in the initial state is 2, you transition to state C and remain in states C and E from that point on. You leave state C if you see anything but 2 and stay out of B until you see a 2 again. The only way to end up on C is if the last symbol you saw was 2. Therefore, strings beginning with 2 are accepted if and only if the strings end in 2. We can have a term like 2(0+1+2)*(2) in our regular expression as well to cover these cases.
Finally, we see that there are no other cases to consider; our three terms cover all cases and the union of them fully describes our language:
0(0+1+2)* + 1(0+1+2)*(1+2) + 2(0+1+2)*2
It was easy to just write out the answer here because this DFA is sort of like three simple DFAs put together with a start state. More complicated DFAs might be easier to convert to REs using algorithms that don't require you understand or follow what the DFA is doing.
Note that if the start state is accepting (mentioned in a comment on another answer) the RE changes as follows:
e + 0(0+1+2)* + 1(0+1+2)*(1+2) + 2(0+1+2)*2
Basically, we just tack the empty string onto it since it is not already generated by any of the other parts of the aggregate expression.
You have the equivalent of what is known as a right-linear system. It's right-linear because the variables occur on the right hand sides only to the first degree and only on the right-hand sides of each term. The system that you have may be written - with a change in labels from 0,1,2 to u,v,w - as
S ≥ u A + v B + w C
A ≥ 1 + (u + v + w) A
B ≥ 1 + u D + (v + w) B
C ≥ 1 + (u + v) E + w C
D ≥ u D + (v + w) B
E ≥ (u + v) E + w C
The underlying algebra is known as a Kleene algebra. It is defined by the following identities that serve as its fundamental properties
(xy)z = x(yz), x1 = x = 1x,
(x + y) + z = x + (y + z), x + 0 = x = 0 + x,
y0z = 0, w(x + y)z = wxz + wyz,
x + y = y + x, x + x = x,
with a partial ordering relation defined by
x ≤ y ⇔ y ≥ x ⇔ ∃z(x + z = y) ⇔ x + y = y
With respect to this ordering relation, all finite subsets have least upper bounds, including the following
0 = ⋁ ∅, x + y = ⋁ {x, y}
The sum operator "+" is the least upper bound operator.
The system you have is a right-linear fixed point system, since it expresses the variables on the left as a (right-linear) function, as given on the right, of the variables. The object being specified by the system is the least solution with respect to the ordering; i.e. the least fixed point solution; and the regular expression sought out is the value that the main variable has in the least fixed point solution.
The last axiom(s) for Kleene algebras can be stated in any of a number of equivalent ways, including the following:
0* = 1
the least fixed point solution to x ≥ a + bx + xc is x = b* a c*.
There are other ways to express it. A consequence is that one has identities such as the following:
1 + a a* = a* = 1 + a* a
(a + b)* = a* (b a*)*
(a b)* a = a (b a)*
In general, right linear systems, such as the one corresponding to your problem may be written in vector-matrix form as 𝐪 ≥ 𝐚 + A 𝐪, with the least fixed point solution given in matrix form as 𝐪 = A* 𝐚. The central theorem of Kleene algebras is that all finite right-linear systems have least fixed point solutions; so that one can actually define matrix algebras over Kleene algebras with product and sum given respectively as matrix product and matrix sum, and that this algebra can be made into a Kleene algebra with a suitably-defined matrix star operation through which the least fixed point solution is expressed. If the matrix A decomposes into block form as
B C
D E
then the star A* of the matrix has the block form
(B + C E* D)* (B + C E* D)* C E*
(E + D B* C)* D B* (E + D B* C)*
So, what this is actually saying is that for a vector-matrix system of the form
x ≥ a + B x + C y
y ≥ b + D x + E y
the least fixed point solution is given by
x = (B + C E* D)* (a + C E* b)
y = (E + D B* C)* (D B* a + b)
The star of a matrix, if expressed directly in terms of its components, will generally be huge and highly redundant. For an n×n matrix, it has size O(n³) - cubic in n - if you allow for redundant sub-expressions to be defined by macros. Otherwise, if you in-line insert all the redundancy then I think it blows up to a highly-redundant mess that is exponential in n in size.
So, there's intelligence required and involved (literally meaning: AI) in finding or pruning optimal forms that avoid the blow-up as much as possible. That's a non-trivial job for any purported matrix solver and regular expression synthesis compiler.
An heuristic, for your system, is to solve for the variables that don't have a "1" on the right-hand side and in-line substitute the solutions - and to work from bottom-up in terms of the dependency chain of the variables. That would mean starting with D and E first
D ≥ u* (v + w) B
E ≥ (u + v)* w C
In-line substitute into the other inequations
S ≥ u A + v B + w C
A ≥ 1 + (u + v + w) A
B ≥ 1 + u u* (v + w) B + (v + w) B
C ≥ 1 + (u + v) (u + v)* w C + w C
Apply Kleene algebra identities (e.g. x x* y + y = x* y)
S ≥ u A + v B + w C
A ≥ 1 + (u + v + w) A
B ≥ 1 + u* (v + w) B
C ≥ 1 + (u + v)* w C
Solve for the next layer of dependency up: A, B and C:
A ≥ (u + v + w)*
B ≥ (u* (v + w))*
C ≥ ((u + v)* w)*
Apply some more Kleene algebra (e.g. (x* y)* = 1 + (x + y)* y) to get
B ≥ 1 + N (v + w)
C ≥ 1 + N w
where, for convenience we set N = (u + v + w)*. In-line substitute at the top-level:
S ≥ u N + v (1 + N (v + w)) + w (1 + N w).
The least fixed point solution, in the main variable S, is thus:
S = u N + v + v N (v + w) + w + w N w.
where
N = (u + v + w)*.
As you can already see, even with this simple example, there's a lot of chess-playing to navigate through the system to find an optimally-pruned solution. So, it's certainly not a trivial problem. What you're essentially doing is synthesizing a control-flow structure for a program in a structured programming language from a set of goto's ... essentially the core process of reverse-compiling from assembly language to a high level language.
One measure of optimization is that of minimizing the loop-depth - which here means minimizing the depth of the stars or the star height. For example, the expression x* (y x*)* has star-height 2 but reduces to (x + y)*, which has star height 1. Methods for reducing star-height come out of the research by Hashiguchi and his resolution of the minimal star-height problem. His proof and solution (dating, I believe, from the 1980's or 1990's) is complex and to this day the process still goes on of making something more practical of it and rendering it in more accessible form.
Hashiguchi's formulation was cast in the older 1950's and 1960's formulation, predating the axiomatization of Kleene algebras (which was in the 1990's), so to date, nobody has rewritten his solution in entirely algebraic form within the framework of Kleene algebras anywhere in the literature ... as far as I'm aware. Whoever accomplishes this will have, as a result, a core element of an intelligent regular expression synthesis compiler, but also of a reverse-compiler and programming language synthesis de-compiler. Essentially, with something like that on hand, you'd be able to read code straight from binary and the lid will be blown off the world of proprietary systems. [Bite tongue, bite tongue, mustn't reveal secret yet, must keep the ring hidden.]

How is the full adder's carry out term derived?

I'm reading the section of the full adder in Digital Design by Morris Mano and I can't seem to figure out how it got from equation A to equation B.
From a full adder's truth table and k-map using inputs x, y, and z, the carry out term, C, is defined as:
C = xy + xz + yz (equation A)
I could understand the above, but in order to leverage the xor already used by the summation term of x, y, and z, the book redefines C as:
C = z(xy' + x'y) + xy = xy'z + x'yz + xy (equation B)
How are these two equivalent? I've tried to derive one from the other on paper but I'm not able to come up with the steps in between.
Sorry my comment (which I removed) was hastily stated.
Consider the following logic table (I'm using ^ to represent XOR for brevity):
The results of xy + xz + yz are the same as xy + (x ^ y)z because, for the first 6 cases, the value of x + y and x ^ y are the same. For the last two cases where they are different, the xy term being OR'ed in is 1 which makes their difference irrelevant to the final value.

TI-BASIC (TI-84) Solving for the Sides of a Triangle

Could someone tell me if I've coded this correctly? This is my code for solving for the sides of a triangle given its perimeter, altitude, and angle (for the algebra see http://www.analyzemath.com/Geometry/challenge/triangle_per_alt_angle.html)
Prompt P
Prompt H
Prompt L [the angle]
(HP^2)/(2H(1+cos(L))+2Psin(L))→Y
(-P^2-2(1+cos(L))Y/(-2P)→Z
(Z+sqrt(Z^2-4Y))/2→N
[The same as above but Z-sqrt...]→R
If N>0
N→U
If R>0
R→U
Y/U→V
sqrt(U^2+V^2-2UVcos(L))→W
Disp U
Disp V
Disp W
Also, how would I fix this so that I can input angle = 90?
Also, in this code does it matter if the altitude is the one between b and c (refer to the website again)?
Thanks in advance
The code already works with L=90°.
Yes, the altitude must be the distance from point A to the base a between points B and C, forming a right-angle with that base. The derivation made that assumption, specifically with respect to the way it used h and a in the second area formula 1/2 h a. That exact formula would not apply if h was drawn differently.
The reason your second set of inputs resulted in a non-real answer is that sometimes a set of mathematical parameters can be inconsistent with each other and describe an impossible construct, and your P, h, and L values do exactly that. Specifically, they describe an impossible triangle.
Given an altitude h and angle L, the smallest perimeter P that can be achieved is an isosceles triangle split down the middle by h. With L=30, this would have perimeter P = a + b + c = 2h tan15 + h/cos15 + h/cos15, which, plugging in your h=3, results in P=7.819. You instead tried to use P=3+sqrt(3)=4.732. Try using various numbers less than 7.819 (plus a little; I've rounded here) and you'll see they all result in imaginary results. That's math telling you you're calculating something that cannot exist in reality.
If you fill in the missing close parenthesis between the Y and the / in line 5, then your code works perfectly.
I wrote the code slightly differently from you, here's what I did:
Prompt P
Prompt H
Prompt L
HP²/(2H(1+cos(L))+2Psin(L))→Y
(HP-Ysin(L))/H→Z
Z²-4Y→D
If D<0:Then
Disp "IMAGINARY"
Stop
End
(Z+√(D))/2→C
Y/C→B
P-(B+C)→A
Disp A
Disp B
Disp C
Edit: #Gabriel, there's nothing special (with respect to this question) about the angles 30-60-90; there is an infinite number of sets of P, h, and L inputs that describe such triangles. However, if you actually want to arrive at such triangles in the answer, you've actually changed the question; instead of just knowing one angle L plus P and h, you now know three angles (30-60-90) plus P and h. You've now over-specified the triangle, so that it is pretty well certain that a randomly generated set of inputs will describe an impossible triangle. As a contrived example, if you specified h as 0.0001 and P as 99999, then that's clearly impossible, because a triangle with a tiny altitude and fairly unextreme angles (which 30-60-90 are) cannot possibly achieve a perimeter many times its altitude.
If you want to start with just one of P or h, then you can derive equations to calculate all parameters of the triangle from the known P or h plus the knowledge of the 30-60-90 angles.
To give one example of this, if we assume that side a forms the base of the triangle between the 90° and 60° angles, then we have L=30 and (labelling the 60° angle as B) we have h=b, and you can get simple equations for all parameters:
P = a + h + c
sin60 = h/c
cos60 = a/c
=> P = c cos60 + c sin60 + c
P = c(cos60 + sin60 + 1)
c = P/(cos60 + sin60 + 1)
b = h = c sin60
a = c cos60
Plugging in P=100 we have
c = 100/(cos60 + sin60 + 1) = 42.265
b = h = 36.603
a = 21.132
If you plug in P=100, h=36.603, and L=30 into the code, you'll see you get these exact results.
Always optimize for speed, then size.
Further optimizing bgoldst's code:
Prompt P,H,L
HP²/(2H(1+cos(L))+2Psin(L
.5(Z+√((HP-sin(L)Ans)/H)²-4Ans
{Y/C→B,P-B-Ans,Ans

Can someone help me with this proof using the pumping lemma?

I just started reading about the pumping lemma and know how to perform a few proofs, mostly by contradiction. It is only this particular question which I don't seem to find an answer for. I have no idea on how to begin. I can assume that there has to be a pumping length P and that for all w element of L that the LENGTH(w) >= P. And of course that we can write w as xyz with the three normal conditions of the pumping lemma.
I have to proof that the following language is non regular:
L = {x + y = z | x,y,z element of {0,1}* and #(x) + #(y) = #(z) }
Can someone help me on this, I really want to master the process in proofing these kind of questions?
Edit:
Sorry, forgot to say that the alphabet is {0,1,+,=} and # means the binary value of the string. Like #(00101) = 5 and #(110) = 6.
Since you want to master the process, I'll point out a few things before showing a proof.
The first thing to notice is that the + and the = may only appear once each. So when you write your string w as w = abc, the pumped portion, b, cannot contain + or = otherwise you'd reach a trivial contradiction (I'm not using the more standard w = xyz notation to avoid confusion with L's definition).
Another thing to notice is that normally, you'd pick a specific string w to pump. In this case, it could be easier to pick a class of strings that share a certain property. The pumping lemma only requires you to reach a contratiction using one string, but there's no reason you can't reach a contradiction with multiple strings.
Proof (in a spoiler):
So let w be any string in L such that |w| ≥ P and x, y, z do not contain leading 0's. By the pumping lemma we can write w as w = abc By pumping lemma, we know b is not empty. Since b cannot contain + or =, it is fully contained in either x, y, or z. Pumping w with any i ≠ 1 results in the binary equation no longer holding since exactly one of x, y, z would be a different number (this is why we needed the no leading 0's bit).
Choose as the string 1(0^n+1) + 1(0^n) = 11(0^n).
In other words, your string will read "the sum of two to the power n+2 plus two to the power n+1 is equal to 11 followed by n zeroes".
Since the string to be pumped will consist entirely of symbols from the first addend, pumping must change the number represented (adding or removing digits to a number will change the number; this is true because our string doesn't contain leading zeroes) and if x + y = z holds, then x' + y = z does not hold if x' != x (over integers, at least).
Since the pumping lemma requires pumped strings to be in the language, and pumping this string fails, we have that the language is not regular.

Projective transformation

Given two image buffers (assume it's an array of ints of size width * height, with each element a color value), how can I map an area defined by a quadrilateral from one image buffer into the other (always square) image buffer? I'm led to understand this is called "projective transformation".
I'm also looking for a general (not language- or library-specific) way of doing this, such that it could be reasonably applied in any language without relying on "magic function X that does all the work for me".
An example: I've written a short program in Java using the Processing library (processing.org) that captures video from a camera. During an initial "calibrating" step, the captured video is output directly into a window. The user then clicks on four points to define an area of the video that will be transformed, then mapped into the square window during subsequent operation of the program. If the user were to click on the four points defining the corners of a door visible at an angle in the camera's output, then this transformation would cause the subsequent video to map the transformed image of the door to the entire area of the window, albeit somewhat distorted.
Using linear algebra is much easier than all that geometry! Plus you won't need to use sine, cosine, etc, so you can store each number as a rational fraction and get the exact numerical result if you need it.
What you want is a mapping from your old (x,y) co-ordinates to your new (x',y') co-ordinates. You can do it with matrices. You need to find the 2-by-4 projection matrix P such that P times the old coordinates equals the new co-ordinates. We'll assume that you're mapping lines to lines (not, for instance, straight lines to parabolas). Because you have a projection (parallel lines don't stay parallel) and translation (sliding), you need a factor of (xy) and (1), too. Drawn as matrices:
[x ]
[a b c d]*[y ] = [x']
[e f g h] [x*y] [y']
[1 ]
You need to know a through h so solve these equations:
a*x_0 + b*y_0 + c*x_0*y_0 + d = i_0
a*x_1 + b*y_1 + c*x_1*y_1 + d = i_1
a*x_2 + b*y_2 + c*x_2*y_2 + d = i_2
a*x_3 + b*y_3 + c*x_3*y_3 + d = i_3
e*x_0 + f*y_0 + g*x_0*y_0 + h = j_0
e*x_1 + f*y_1 + g*x_1*y_1 + h = j_1
e*x_2 + f*y_2 + g*x_2*y_2 + h = j_2
e*x_3 + f*y_3 + g*x_3*y_3 + h = j_3
Again, you can use linear algebra:
[x_0 y_0 x_0*y_0 1] [a e] [i_0 j_0]
[x_1 y_1 x_1*y_1 1] * [b f] = [i_1 j_1]
[x_2 y_2 x_2*y_2 1] [c g] [i_2 j_2]
[x_3 y_3 x_3*y_3 1] [d h] [i_3 j_3]
Plug in your corners for x_n,y_n,i_n,j_n. (Corners work best because they are far apart to decrease the error if you're picking the points from, say, user-clicks.) Take the inverse of the 4x4 matrix and multiply it by the right side of the equation. The transpose of that matrix is P. You should be able to find functions to compute a matrix inverse and multiply online.
Where you'll probably have bugs:
When computing, remember to check for division by zero. That's a sign that your matrix is not invertible. That might happen if you try to map one (x,y) co-ordinate to two different points.
If you write your own matrix math, remember that matrices are usually specified row,column (vertical,horizontal) and screen graphics are x,y (horizontal,vertical). You're bound to get something wrong the first time.
EDIT
The assumption below of the invariance of angle ratios is incorrect. Projective transformations instead preserve cross-ratios and incidence. A solution then is:
Find the point C' at the intersection of the lines defined by the segments AD and CP.
Find the point B' at the intersection of the lines defined by the segments AD and BP.
Determine the cross-ratio of B'DAC', i.e. r = (BA' * DC') / (DA * B'C').
Construct the projected line F'HEG'. The cross-ratio of these points is equal to r, i.e. r = (F'E * HG') / (HE * F'G').
F'F and G'G will intersect at the projected point Q so equating the cross-ratios and knowing the length of the side of the square you can determine the position of Q with some arithmetic gymnastics.
Hmmmm....I'll take a stab at this one. This solution relies on the assumption that ratios of angles are preserved in the transformation. See the image for guidance (sorry for the poor image quality...it's REALLY late). The algorithm only provides the mapping of a point in the quadrilateral to a point in the square. You would still need to implement dealing with multiple quad points being mapped to the same square point.
Let ABCD be a quadrilateral where A is the top-left vertex, B is the top-right vertex, C is the bottom-right vertex and D is the bottom-left vertex. The pair (xA, yA) represent the x and y coordinates of the vertex A. We are mapping points in this quadrilateral to the square EFGH whose side has length equal to m.
Compute the lengths AD, CD, AC, BD and BC:
AD = sqrt((xA-xD)^2 + (yA-yD)^2)
CD = sqrt((xC-xD)^2 + (yC-yD)^2)
AC = sqrt((xA-xC)^2 + (yA-yC)^2)
BD = sqrt((xB-xD)^2 + (yB-yD)^2)
BC = sqrt((xB-xC)^2 + (yB-yC)^2)
Let thetaD be the angle at the vertex D and thetaC be the angle at the vertex C. Compute these angles using the cosine law:
thetaD = arccos((AD^2 + CD^2 - AC^2) / (2*AD*CD))
thetaC = arccos((BC^2 + CD^2 - BD^2) / (2*BC*CD))
We map each point P in the quadrilateral to a point Q in the square. For each point P in the quadrilateral, do the following:
Find the distance DP:
DP = sqrt((xP-xD)^2 + (yP-yD)^2)
Find the distance CP:
CP = sqrt((xP-xC)^2 + (yP-yC)^2)
Find the angle thetaP1 between CD and DP:
thetaP1 = arccos((DP^2 + CD^2 - CP^2) / (2*DP*CD))
Find the angle thetaP2 between CD and CP:
thetaP2 = arccos((CP^2 + CD^2 - DP^2) / (2*CP*CD))
The ratio of thetaP1 to thetaD should be the ratio of thetaQ1 to 90. Therefore, calculate thetaQ1:
thetaQ1 = thetaP1 * 90 / thetaD
Similarly, calculate thetaQ2:
thetaQ2 = thetaP2 * 90 / thetaC
Find the distance HQ:
HQ = m * sin(thetaQ2) / sin(180-thetaQ1-thetaQ2)
Finally, the x and y position of Q relative to the bottom-left corner of EFGH is:
x = HQ * cos(thetaQ1)
y = HQ * sin(thetaQ1)
You would have to keep track of how many colour values get mapped to each point in the square so that you can calculate an average colour for each of those points.
I think what you're after is a planar homography, have a look at these lecture notes:
http://www.cs.utoronto.ca/~strider/vis-notes/tutHomography04.pdf
If you scroll down to the end you'll see an example of just what you're describing. I expect there's a function in the Intel OpenCV library which will do just this.
There is a C++ project on CodeProject that includes source for projective transformations of bitmaps. The maths are on Wikipedia here. Note that so far as i know, a projective transformation will not map any arbitrary quadrilateral onto another, but will do so for triangles, you may also want to look up skewing transforms.
If this transformation has to look good (as opposed to the way a bitmap looks if you resize it in Paint), you can't just create a formula that maps destination pixels to source pixels. Values in the destination buffer have to be based on a complex averaging of nearby source pixels or else the results will be highly pixelated.
So unless you want to get into some complex coding, use someone else's magic function, as smacl and Ian have suggested.
Here's how would do it in principle:
map the origin of A to the origin of B via a traslation vector t.
take unit vectors of A (1,0) and (0,1) and calculate how they would be mapped onto the unit vectors of B.
this gives you a transformation matrix M so that every vector a in A maps to M a + t
invert the matrix and negate the traslation vector so for every vector b in B you have the inverse mapping b -> M-1 (b - t)
once you have this transformation, for each point in the target area in B, find the corresponding in A and copy.
The advantage of this mapping is that you only calculate the points you need, i.e. you loop on the target points, not the source points. It was a widely used technique in the "demo coding" scene a few years back.

Resources