Does Piecewise Bezier curve pass vertical line test? - graphics

Consider a piecewise cubic Bezier curve with N segments, defined in terms of 4N control points. How can I determine whether this curve passes the Vertical Line Test? That is: do there exist points x,y1,y2 such that y1!=y2 and both (x,y1) and (x,y2) lie on the curve? Additionally, it would be nice but not essential to return the values of the points x,y1,y2 if such points exist.
In principle, one could just evaluate the curve explicitly at a large number of points, but in my application the curves can have a large number of segments so this is prohibitively slow. Thus I am looking for an algorithm that operates on the control points only, and does not rely on explicitly evaluating the curves at a large number of points.

Closed curves will fail your test by definition, so let's look at open curves: for a curve to fail your vertical line test, at least one segment in your piecewise cubic polyBezier needs to "reverse direction" along the x-axis, which means its x component needs to have extrema in the inclusive interval [0,1].
For example, this curve doesn't (the right side shows the component function for x, with global extrema in red and inflections in purple):
(Also note that we're only drawing the [0,1] interval, but if we were to extend it, those global extrema wouldn't actually be at t=0 and t=1. This is in fact critically important, and we'll see why, below)
This curve also doesn't (but only just):
But this curve does:
As does this one. Twice, in fact:
As does a curve "just past its cusp":
Which is easier to see when we exaggerate it:
This means we need to find the first derivative, find out where it's zero, and then make sure that (because Beziers can have cusps) the sign of that derivative flips at that point (or points, as there can be two).
Turns out, the derivative is trivially not-even-really-computed, so for each segment we have:
w = [x1, x2, x3, x4]
Bx(t) = w[0] * (1-t)³ + 3 * w[1] * t(1-t)² + w[2] * t²(1-t) + w[3] * t³
// bezier form of the derivative:
v = [
3 * (w[1] - w[0]),
3 * (w[2] - w[1]),
3 * (w[3] - w[2]),
]
Bx'(t) = v[0] * (1-t)² + 2 * v[1] * t(1-t) + v[2] * t²
Which we can trivially rewrite to polynomial form:
a = v[0] - 2*v[1] + v[2]
b = 2 * (v[1] - v[0])
c = v[0]
Bx'(t) = a * t² + b * t + c
So we find the roots for that, which is a matter of applying the quadratic formula, which gives us 0, 1, or 2 roots.
if (a == 0) there are no roots
denominator = 2 * a
discriminant = b * b - 2 * denominator * c
if (discriminant < 0) there are no (real) roots
d = sqrt(discriminant)
t1 = -(b + d) / denominator
if (0 ≤ t1 ≤ 1) then t1 is a valid root
t2 = (d - b) / denominator
if (0 ≤ t2 ≤ 1) then t2 is a valid root
If there are no (real) roots, then this segment does not cause the curve to fail your vertical line test, and we move on to the next segment and repeat until we've either found a failure, or we've run out of segments to test.
If it's 1 or 2 roots, we check that the signs of Bx'(t-ε) and Bx'(t+ε) for some very small value of ε differ (because we want to make sure we don't conclude that the above curve with a cusp fails the test: it has a zero derivative but it "keeps going in the same direction" across that root instead of flipping direction). If they do, this segment is (one of) the segment(s) that makes your curve fail your vertical line test.
Also, note that we're testing even if the root is at 0 or 1: the piecewise curve might inflect "across segments", and we can take advantage of the fact that we can evaluate Bx'(t) for t = -ε or t = 1+ε to see if we flip direction, even if we never draw the curve prior to t=0 or after t=1.

Leaving solution here for reference. Not especially elegant but gets the job done. Assume that the curve is parametrized from left to right. The key observation is that the curve intersects a vertical at two points if and only if there is a point at which the derivative x'(t) of the x component is strictly negative. For a cubic Bezier curve the derivative is a quadratic polynomial x'(t)=at^2+bt+c. So we just need to check whether the minimum of this quadratic over the interval 0<=t<=1 is negative, which is straightforward (if a bit tedious) using basic algebra.

Related

Given these static points, which is Bezier Curve

I have this question that is to determine the bezier curve that goes through theses points: (1,1), (2,-1), (3,1). How can we find the curve? I dont get how to use the equation. And how could we find the curves degree?
There is infinity of Bezier curves through these points. You need to be more specific.
For example, one may define that curve is quadratic, the first point is starting one (t=0), the third is ending one (t=1) and the second is exact middle (t=0.5).
Then build equations (substituting t value and points coordinates) and solve them for coefficients
p[0].x * (1-t)^2 + p[1].x * 2 * t * (1-t) + p[2].x * t^2 = X(t)
example for the first point:
p[0].x * (1-0)^2 + p[1].x * 2 * 0 * (1-0) + p[2].x * (0)^2 = 1
p[0].x = 2
A Bezier curve of degree N is a weighted sum of N+1 control points in 2D
Sum(i=0,N) Wi(t).Ci
If you have N+1 points Pj for which the values of t are known, you get a linear system of 2(N+1) equations in 2(N+1) unknowns
Sum(I=0,N) Wi(tj).Ci = Pj
The tj can be chosen uniformly in [0,1]. Another choice is using the cumulated linear distances between the control points (also reduced to [0,1]).
It is a very different matter if you don't want to provide the tj yourself. Then you can reduce the degree of the curve and trade control points for the values of t. Generally, the number of equations and unknowns cannot match and the system will be over or underdetermined.
Another difficulty is if you impose the order of the points. Then the unknowns t are constrained to be increasing, leading to a difficult system of equations and inequations.

How to draw the normal to the plane in PCL

I have the plane equation describing the points belonging to a plane in 3D and the origin of the normal X, Y, Z. This should be enough to be able to generate something like a 3D arrow. In pcl this is possible via the viewer but I would like to actually store those 3D points inside the cloud. How to generate them then ? A cylinder with a cone on top ?
To generate a line perpendicular to the plane:
You have the plane equation. This gives you the direction of the normal to the plane. If you used PCL to get the plane, this is in ModelCoefficients. See the details here: SampleConsensusModelPerpendicularPlane
The first step is to make a line perpendicular to the normal at the point you mention (X,Y,Z). Let (NORMAL_X,NORMAL_Y,NORMAL_Z) be the normal you got from your plane equation. Something like.
pcl::PointXYZ pnt_on_line;
for(double distfromstart=0.0;distfromstart<LINE_LENGTH;distfromstart+=DISTANCE_INCREMENT){
pnt_on_line.x = X + distfromstart*NORMAL_X;
pnt_on_line.y = Y + distfromstart*NORMAL_Y;
pnt_on_line.z = Z + distfromstart*NORMAL_Z;
my_cloud.points.push_back(pnt_on_line);
}
Now you want to put a hat on your arrow and now pnt_on_line contains the end of the line exactly where you want to put it. To make the cone you could loop over angle and distance along the arrow, calculate a local x and y and z from that and convert them to points in point cloud space: the z part would be converted into your point cloud's frame of reference by multiplying with the normal vector as with above, the x and y would be multiplied into vectors perpendicular to this normal vectorE. To get these, choose an arbitrary unit vector perpendicular to the normal vector (for your x axis) and cross product it with the normal vector to find the y axis.
The second part of this explanation is fairly terse but the first part may be the more important.
Update
So possibly the best way to describe how to do the cone is to start with a cylinder, which is an extension of the line described above. In the case of the line, there is (part of) a one dimensional manifold embedded in 3D space. That is we have one variable that we loop over adding points. The cylinder is a two dimensional object so we have to loop over two dimensions: the angle and the distance. In the case of the line we already have the distance. So the above loop would now look like:
for(double distfromstart=0.0;distfromstart<LINE_LENGTH;distfromstart+=DISTANCE_INCREMENT){
for(double angle=0.0;angle<2*M_PI;angle+=M_PI/8){
//calculate coordinates of point and add to cloud
}
}
Now in order to calculate the coordinates of the new point, well we already have the point on the line, now we just need to add it to a vector to move it away from the line in the appropriate direction of the angle. Let's say the radius of our cylinder will be 0.1, and let's say an orthonormal basis that we have already calculated perpendicular to the normal of the plane (which we will see how to calculate later) is perpendicular_1 and perpendicular_2 (that is, two vectors perpendicular to each other, of length 1, also perpendicular to the vector (NORMAL_X,NORMAL_Y,NORMAL_Z)):
//calculate coordinates of point and add to cloud
pnt_on_cylinder.x = pnt_on_line.x + 0.1 * perpendicular_1.x * 0.1 * cos(angle) + perpendicular_2.x * sin(angle)
pnt_on_cylinder.y = pnt_on_line.y + perpendicular_1.y * 0.1 * cos(angle) + perpendicular_2.y * 0.1 * sin(angle)
pnt_on_cylinder.z = pnt_on_line.z + perpendicular_1.z * 0.1 * cos(angle) + perpendicular_2.z * 0.1 * sin(angle)
my_cloud.points.push_back(pnt_on_cylinder);
Actually, this is a vector summation and if we were to write the operation as vectors it would look like:
pnt_on_line+perpendicular_1*cos(angle)+perpendicular_2*sin(angle)
Now I said I would talk about how to calculate perpendicular_1 and perpendicular_2. Let K be any unit vector that is not parallel to (NORMAL_X,NORMAL_Y,NORMAL_Z) (this can be found by trying e.g. (1,0,0) then (0,1,0)).
Then
perpendicular_1 = K X (NORMAL_X,NORMAL_Y,NORMAL_Z)
perpendicular_2 = perpendicular_1 X (NORMAL_X,NORMAL_Y,NORMAL_Z)
Here X is the vector cross product and the above are vector equations. Note also that the original calculation of pnt_on_line involved a vector dot product and a vector summation (I am just writing this for completeness of the exposition).
If you can manage this then the cone is easy just by changing a couple of things in the double loop: the radius just changes along its length until it is zero at the end of the loop and in the loop distfromstart will not start at 0.

How do I QUICKLY find the closest intersection in 2D between a ray and m polylines?

How do I find the closest intersection in 2D between a ray:
x = x0 + t*cos(a), y = y0 + t*sin(a)
and m polylines:
{(x1,y1), (x2,y2), ..., (xn,yn)}
QUICKLY?
I started by looping trough all linesegments and for each linesegment;
{(x1,y1),(x2,y2)} solving:
x1 + u*(x2-x1) = x0 + t*cos(a)
y1 + u*(y2-y1) = y0 + t*sin(a)
by Cramer's rule, and afterward sorting the intersections on distance, but that was slow :-(
BTW: the polylines happens to be monotonically increasing in x.
Coordinate system transformation
I suggest you first transform your setup to something with easier coordinates:
Take your point p = (x, y).
Move it by (-x0, -y0) so that the ray now starts at the center.
Rotate it by -a so that the ray now lies on the x axis.
So far the above operations have cost you four additions and four multiplications per point:
ca = cos(a) # computed only once
sa = sin(a) # likewise
x' = x - x0
y' = y - y0
x'' = x'*ca + y'*sa
y'' = y'*ca - x'*sa
Checking for intersections
Now you know that a segment of the polyline will only intersect the ray if the sign of its y'' value changes, i.e. y1'' * y2'' < 0. You could even postpone the computation of the x'' values until after this check. Furthermore, the segment will only intersect the ray if the intersection of the segment with the x axis occurs for x > 0, which can only happen if either value is greater than zero, i.e. x1'' > 0 or x2'' > 0. If both x'' are greater than zero, then you know there is an intersection.
The following paragraph is kind of optional, don't worry if you don't understand it, there is an alternative noted later on.
If one x'' is positive but the other is negative, then you have to check further. Suppose that the sign of y'' changed from negative to positive, i.e. y1'' < 0 < y2''. The line from p1'' to p2'' will intersect the x axis at x > 0 if and only if the triangle formed by p1'', p2'' and the origin is oriented counter-clockwise. You can determine the orientation of that triangle by examining the sign of the determinant x1''*y2'' - x2''*y1'', it will be positive for a counter-clockwise triangle. If the direction of the sign change is different, the orientation has to be different as well. So to take this together, you can check whether
(x1'' * y2'' - x2'' * y1'') * y2'' > 0
If that is the case, then you have an intersection. Notice that there were no costly divisions involved so far.
Computing intersections
As you want to not only decide whether an intersection exists, but actually find a specific one, you now have to compute that intersection. Let's call it p3. It must satisfy the equations
(x2'' - x3'')/(y2'' - y3'') = (x1'' - x3'')/(y1'' - y3'') and
y3'' = 0
which results in
x3'' = (x1'' * y1'' - x2'' * y2'')/(y1'' - y2'')
Instead of the triangle orientation check from the previous paragraph, you could always compute this x3'' value and discard any results where it turns out to be negative. Less code, but more divisions. Benchmark if in doubt about performance.
To find the point closest to the origin of the ray, you take the result with minimal x3'' value, which you can then transform back into its original position:
x3 = x3''*ca + x0
y3 = x3''*sa + y0
There you are.
Note that all of the above assumed that all numbers were either positive or negative. If you have zeros, it depends on the exact interpretation of what you actually want to compute, how you want to handle these border cases.
To avoid checking intersection with all segments, some space partition is needed, like Quadtree, BSP tree. With space partition it is needed to check ray intersection with space partitions.
In this case, since points are sorted by x-coordinate, it is possible to make space partition with boxes (min x, min y)-(max x, max y) for parts of polyline. Root box is min-max of all points, and it is split in 2 boxes for first and second part of a polyline. Number of segments in parts is same or one box has one more segment. This box splitting is done recursively until only one segment is in a box.
To check ray intersection start with root box and check is it intersected with a ray, if it is than check 2 sub-boxes for an intersection and first test closer sub-box then farther sub-box.
Checking ray-box intersection is checking if ray is crossing axis aligned line between 2 positions. That is done for 4 box boundaries.

Best fit square to quadrilateral

I've got a shape consisting of four points, A, B, C and D, of which the only their position is known. The goal is to transform these points to have specific angles and offsets relative to each other.
For example: A(-1,-1) B(2,-1) C(1,1) D(-2,1), which should be transformed to a perfect square (all angles 90) with offsets between AB, BC, CD and AD all being 2. The result should be a square slightly rotated counter-clockwise.
What would be the most efficient way to do this?
I'm using this for a simple block simulation program.
As Mark alluded, we can use constrained optimization to find the side 2 square that minimizes the square of the distance to the corners of the original.
We need to minimize f = (a-A)^2 + (b-B)^2 + (c-C)^2 + (d-D)^2 (where the square is actually a dot product of the vector argument with itself) subject to some constraints.
Following the method of Lagrange multipliers, I chose the following distance constraints:
g1 = (a-b)^2 - 4
g2 = (c-b)^2 - 4
g3 = (d-c)^2 - 4
and the following angle constraints:
g4 = (b-a).(c-b)
g5 = (c-b).(d-c)
A quick napkin sketch should convince you that these constraints are sufficient.
We then want to minimize f subject to the g's all being zero.
The Lagrange function is:
L = f + Sum(i = 1 to 5, li gi)
where the lis are the Lagrange multipliers.
The gradient is non-linear, so we have to take a hessian and use multivariate Newton's method to iterate to a solution.
Here's the solution I got (red) for the data given (black):
This took 5 iterations, after which the L2 norm of the step was 6.5106e-9.
While Codie CodeMonkey's solution is a perfectly valid one (and a great use case for the Lagrangian Multipliers at that), I believe that it's worth mentioning that if the side length is not given this particular problem actually has a closed form solution.
We would like to minimise the distance between the corners of our fitted square and the ones of the given quadrilateral. This is equivalent to minimising the cost function:
f(x1,...,y4) = (x1-ax)^2+(y1-ay)^2 + (x2-bx)^2+(y2-by)^2 +
(x3-cx)^2+(y3-cy)^2 + (x4-dx)^2+(y4-dy)^2
Where Pi = (xi,yi) are the corners of the fitted square and A = (ax,ay) through D = (dx,dy) represent the given corners of the quadrilateral in clockwise order. Since we are fitting a square we have certain contraints regarding the positions of the four corners. Actually, if two opposite corners are given, they are enough to describe a unique square (save for the mirror image on the diagonal).
Parametrization of the points
This means that two opposite corners are enough to represent our target square. We can parametrise the two remaining corners using the components of the first two. In the above example we express P2 and P4 in terms of P1 = (x1,y1) and P3 = (x3,y3). If you need a visualisation of the geometrical intuition behind the parametrisation of a square you can play with the interactive version.
P2 = (x2,y2) = ( (x1+x3-y3+y1)/2 , (y1+y3-x1+x3)/2 )
P4 = (x4,y4) = ( (x1+x3+y3-y1)/2 , (y1+y3+x1-x3)/2 )
Substituting for x2,x4,y2,y4 means that f(x1,...,y4) can be rewritten to:
f(x1,x3,y1,y3) = (x1-ax)^2+(y1-ay)^2 + ((x1+x3-y3+y1)/2-bx)^2+((y1+y3-x1+x3)/2-by)^2 +
(x3-cx)^2+(y3-cy)^2 + ((x1+x3+y3-y1)/2-dx)^2+((y1+y3+x1-x3)/2-dy)^2
a function which only depends on x1,x3,y1,y3. To find the minimum of the resulting function we then set the partial derivatives of f(x1,x3,y1,y3) equal to zero. They are the following:
df/dx1 = 4x1-dy-dx+by-bx-2ax = 0 --> x1 = ( dy+dx-by+bx+2ax)/4
df/dx3 = 4x3+dy-dx-by-bx-2cx = 0 --> x3 = (-dy+dx+by+bx+2cx)/4
df/dy1 = 4y1-dy+dx-by-bx-2ay = 0 --> y1 = ( dy-dx+by+bx+2ay)/4
df/dy3 = 4y3-dy-dx-2cy-by+bx = 0 --> y3 = ( dy+dx+by-bx+2cy)/4
You may see where this is going, as simple rearrangment of the terms leads to the final solution.
Final solution

Projective transformation

Given two image buffers (assume it's an array of ints of size width * height, with each element a color value), how can I map an area defined by a quadrilateral from one image buffer into the other (always square) image buffer? I'm led to understand this is called "projective transformation".
I'm also looking for a general (not language- or library-specific) way of doing this, such that it could be reasonably applied in any language without relying on "magic function X that does all the work for me".
An example: I've written a short program in Java using the Processing library (processing.org) that captures video from a camera. During an initial "calibrating" step, the captured video is output directly into a window. The user then clicks on four points to define an area of the video that will be transformed, then mapped into the square window during subsequent operation of the program. If the user were to click on the four points defining the corners of a door visible at an angle in the camera's output, then this transformation would cause the subsequent video to map the transformed image of the door to the entire area of the window, albeit somewhat distorted.
Using linear algebra is much easier than all that geometry! Plus you won't need to use sine, cosine, etc, so you can store each number as a rational fraction and get the exact numerical result if you need it.
What you want is a mapping from your old (x,y) co-ordinates to your new (x',y') co-ordinates. You can do it with matrices. You need to find the 2-by-4 projection matrix P such that P times the old coordinates equals the new co-ordinates. We'll assume that you're mapping lines to lines (not, for instance, straight lines to parabolas). Because you have a projection (parallel lines don't stay parallel) and translation (sliding), you need a factor of (xy) and (1), too. Drawn as matrices:
[x ]
[a b c d]*[y ] = [x']
[e f g h] [x*y] [y']
[1 ]
You need to know a through h so solve these equations:
a*x_0 + b*y_0 + c*x_0*y_0 + d = i_0
a*x_1 + b*y_1 + c*x_1*y_1 + d = i_1
a*x_2 + b*y_2 + c*x_2*y_2 + d = i_2
a*x_3 + b*y_3 + c*x_3*y_3 + d = i_3
e*x_0 + f*y_0 + g*x_0*y_0 + h = j_0
e*x_1 + f*y_1 + g*x_1*y_1 + h = j_1
e*x_2 + f*y_2 + g*x_2*y_2 + h = j_2
e*x_3 + f*y_3 + g*x_3*y_3 + h = j_3
Again, you can use linear algebra:
[x_0 y_0 x_0*y_0 1] [a e] [i_0 j_0]
[x_1 y_1 x_1*y_1 1] * [b f] = [i_1 j_1]
[x_2 y_2 x_2*y_2 1] [c g] [i_2 j_2]
[x_3 y_3 x_3*y_3 1] [d h] [i_3 j_3]
Plug in your corners for x_n,y_n,i_n,j_n. (Corners work best because they are far apart to decrease the error if you're picking the points from, say, user-clicks.) Take the inverse of the 4x4 matrix and multiply it by the right side of the equation. The transpose of that matrix is P. You should be able to find functions to compute a matrix inverse and multiply online.
Where you'll probably have bugs:
When computing, remember to check for division by zero. That's a sign that your matrix is not invertible. That might happen if you try to map one (x,y) co-ordinate to two different points.
If you write your own matrix math, remember that matrices are usually specified row,column (vertical,horizontal) and screen graphics are x,y (horizontal,vertical). You're bound to get something wrong the first time.
EDIT
The assumption below of the invariance of angle ratios is incorrect. Projective transformations instead preserve cross-ratios and incidence. A solution then is:
Find the point C' at the intersection of the lines defined by the segments AD and CP.
Find the point B' at the intersection of the lines defined by the segments AD and BP.
Determine the cross-ratio of B'DAC', i.e. r = (BA' * DC') / (DA * B'C').
Construct the projected line F'HEG'. The cross-ratio of these points is equal to r, i.e. r = (F'E * HG') / (HE * F'G').
F'F and G'G will intersect at the projected point Q so equating the cross-ratios and knowing the length of the side of the square you can determine the position of Q with some arithmetic gymnastics.
Hmmmm....I'll take a stab at this one. This solution relies on the assumption that ratios of angles are preserved in the transformation. See the image for guidance (sorry for the poor image quality...it's REALLY late). The algorithm only provides the mapping of a point in the quadrilateral to a point in the square. You would still need to implement dealing with multiple quad points being mapped to the same square point.
Let ABCD be a quadrilateral where A is the top-left vertex, B is the top-right vertex, C is the bottom-right vertex and D is the bottom-left vertex. The pair (xA, yA) represent the x and y coordinates of the vertex A. We are mapping points in this quadrilateral to the square EFGH whose side has length equal to m.
Compute the lengths AD, CD, AC, BD and BC:
AD = sqrt((xA-xD)^2 + (yA-yD)^2)
CD = sqrt((xC-xD)^2 + (yC-yD)^2)
AC = sqrt((xA-xC)^2 + (yA-yC)^2)
BD = sqrt((xB-xD)^2 + (yB-yD)^2)
BC = sqrt((xB-xC)^2 + (yB-yC)^2)
Let thetaD be the angle at the vertex D and thetaC be the angle at the vertex C. Compute these angles using the cosine law:
thetaD = arccos((AD^2 + CD^2 - AC^2) / (2*AD*CD))
thetaC = arccos((BC^2 + CD^2 - BD^2) / (2*BC*CD))
We map each point P in the quadrilateral to a point Q in the square. For each point P in the quadrilateral, do the following:
Find the distance DP:
DP = sqrt((xP-xD)^2 + (yP-yD)^2)
Find the distance CP:
CP = sqrt((xP-xC)^2 + (yP-yC)^2)
Find the angle thetaP1 between CD and DP:
thetaP1 = arccos((DP^2 + CD^2 - CP^2) / (2*DP*CD))
Find the angle thetaP2 between CD and CP:
thetaP2 = arccos((CP^2 + CD^2 - DP^2) / (2*CP*CD))
The ratio of thetaP1 to thetaD should be the ratio of thetaQ1 to 90. Therefore, calculate thetaQ1:
thetaQ1 = thetaP1 * 90 / thetaD
Similarly, calculate thetaQ2:
thetaQ2 = thetaP2 * 90 / thetaC
Find the distance HQ:
HQ = m * sin(thetaQ2) / sin(180-thetaQ1-thetaQ2)
Finally, the x and y position of Q relative to the bottom-left corner of EFGH is:
x = HQ * cos(thetaQ1)
y = HQ * sin(thetaQ1)
You would have to keep track of how many colour values get mapped to each point in the square so that you can calculate an average colour for each of those points.
I think what you're after is a planar homography, have a look at these lecture notes:
http://www.cs.utoronto.ca/~strider/vis-notes/tutHomography04.pdf
If you scroll down to the end you'll see an example of just what you're describing. I expect there's a function in the Intel OpenCV library which will do just this.
There is a C++ project on CodeProject that includes source for projective transformations of bitmaps. The maths are on Wikipedia here. Note that so far as i know, a projective transformation will not map any arbitrary quadrilateral onto another, but will do so for triangles, you may also want to look up skewing transforms.
If this transformation has to look good (as opposed to the way a bitmap looks if you resize it in Paint), you can't just create a formula that maps destination pixels to source pixels. Values in the destination buffer have to be based on a complex averaging of nearby source pixels or else the results will be highly pixelated.
So unless you want to get into some complex coding, use someone else's magic function, as smacl and Ian have suggested.
Here's how would do it in principle:
map the origin of A to the origin of B via a traslation vector t.
take unit vectors of A (1,0) and (0,1) and calculate how they would be mapped onto the unit vectors of B.
this gives you a transformation matrix M so that every vector a in A maps to M a + t
invert the matrix and negate the traslation vector so for every vector b in B you have the inverse mapping b -> M-1 (b - t)
once you have this transformation, for each point in the target area in B, find the corresponding in A and copy.
The advantage of this mapping is that you only calculate the points you need, i.e. you loop on the target points, not the source points. It was a widely used technique in the "demo coding" scene a few years back.

Resources