I have a WPF script running into problems recently.
The script does subnet scanning using PSParallel module. When the subnet CIDR is less than 21, it starts having the problem.
The problem is:
I have a concurrent queue as a member of a synchronized hash table. The queue is used for producer/consumer model. The scanning threads keep enqueue the data and the GUI thread keep dequeue data and write it to a richtextbox. The dequeue process is handled by a dispatch timer event handler, which is executed every 20 ms. When the CIDR >=21, there is no problem. But when CIDR <21, sometimes it will throw an error message:
Collection was modified; enumeration operation may not execute.
At E:\PSScanner\PSScanner.ps1:446 char:8
+ if($syncHash.Q.Count -ne 0){
+ ~~~~~~~~~~~~~~~~~~~~~~~
+ CategoryInfo : OperationStopped: (:) [], InvalidOperationException
+ FullyQualifiedErrorId : System.InvalidOperationException
I think the synchronized hash table is thread safe and the concurrent queue is thread safe as well. Not sure why is this happening.
The source code is here:
https://github.com/MeCRO-DEV/PSScanner
I fixed the problem eventually.
I was calling a scriptblock stored in a synchronized hash table: $syncHash.Output, which send the output string to a concurrent queue. That scriptblock causes the output messed up and the worker threads terminated unexpectedly. After enqueue the data directly, instead of calling the scriptblock, problem solved.
Also, I have an IP counter $syncHash.Count. I thought it should be thread-safe as it is stored in the synchronized hash table, but actually it is not. I was getting inaccurate counts every time. After setting up a mutex to protect the counter variable, it works perfectly. The only reason I was thinking is the counter is updated in worker threads which are PSParallel instances(Invoke-Parallel cmdlet). Not sure how it handles the hash table.
Thank you all for your help.
Related
I am trying to run a fire-and-forget task - IOmniTaskControl.Unobserved works well enough with either IOmniTaskControl.Run or IOmniTaskControl.Schedule(IOmniThreadPool), but the IOmniTaskControl object is never destroyed.
I am limited to using Unobserved since I have an arbitrary number of tasks and I do not want to store them in a dedicated variable or a list - removing a task from that list would be a hustle in itself since it can only be done from the task body.
Am I missing something? I thought that IOmniTaskControl.Unobserved will destroy itself after it runs.
I think I've never answered my own question that quickly :-)
TOmniTaskControl is destructed from the TOmniEventMonitor.WndProc window proc, which of course only runs if there is a message loop in the thread where the monitor was created by the task. In my case, the tasks were created from a dedicated thread (I used TThread.CreateAnonymousThread). Adding a message loop to my thread proc (which runs an infinite while loop) fixed the problem:
//Omni thread library uses Windows messages to communicate with itself
while PeekMessage(wMsg, 0, 0, 0, PM_REMOVE or PM_NOYIELD) do begin
TranslateMessage(wMsg);
DispatchMessage(wMsg)
end;
Using Delphi 7 & UIB, I'm running database operations in a background thread to eliminate problems like:
Timeout
Priority
Immediate Force-reconnect after network-loss
Non-blocked UI
Keeping an opened DB connection alive
User canceling
I've read ALL related topics here, and realized: using while isMyThreadStillRuning and not UserCanceled do sleep(100); end; isn't the recommended way to do this, but rather using TEvent.WaitFor(3000)....
The solutions here are either about sending signals FROM or TO... the thread, or doing it with messages, but never both ways.
Reading the help file, I've also found TSimpleEvent, which seems to be easier to use.
So what is the recommended way to communicate between Main-UI + DB-Thread in both ways?
Should I simply create 2+2 TSimpleEvent?
to start a new transaction (thread should stop sleeping)
force-STOP execution
to signal back if it's moved to a new stage (transaction started / executed / commited=done)
to signal back if there is any error happened
or should there be only 1 TEvent?
Update 2:
First tests show:
2x TSimpleEvent is enough (1 for Thread + 1 for Gui)
Both created as public properties of the background thread
Force-terminating the thread does not work. (Too many errors impossible to handle..)
Better to set a variable like (Stop_yourself) and let it cancel and free itself, (while creating a new instance from the same class and try again.)
(still work in progress...)
You should move the query to a TThread. Unfortunately, anonymous threads are not available in D7 so you need to write your own TThread derived class. Inside, you need its own DB connection to prevent shared resources. From the caller method, you can wait for the thread to end. The results should be stored somewhere in the caller class. Ensure that the access to parameters of the query and for storing the result of the query is handled thread-safe by using a TMutex or TMonitor.
I'm trying to understand the semantics of async/await in an infinitely looping worker thread started inside a windows service. I'm a newbie at this so give me some leeway here, I'm trying to understand the concept.
The worker thread will loop forever (until the service is stopped) and it processes an external queue resource (in this case a SQL Server Service Broker queue).
The worker thread uses config data which could be changed while the service is running by receiving commands on the main service thread via some kind of IPC. Ideally the worker thread should process those config changes while waiting for the external queue messages to be received. Reading from service broker is inherently asynchronous, you literally issue a "waitfor receive" TSQL statement with a receive timeout.
But I don't quite understand the flow of control I'd need to use to do that.
Let's say I used a concurrentQueue to pass config change messages from the main thread to the worker thread. Then, if I did something like...
void ProcessBrokerMessages() {
foreach (BrokerMessage m in ReadBrokerQueue()) {
ProcessMessage(m);
}
}
// ... inside the worker thread:
while (!serviceStopped) {
foreach (configChange in configChangeConcurrentQueue) {
processConfigChange(configChange);
}
ProcessBrokerMessages();
}
...then the foreach loop to process config changes and the broker processing function need to "take turns" to run. Specifically, the config-change-processing loop won't run while the potentially-long-running broker receive command is running.
My understanding is that simply turning the ProcessBrokerMessages() into an async method doesn't help me in this case (or I don't understand what will happen). To me, with my lack of understanding, the most intuitive interpretation seems to be that when I hit the async call it would go off and do its thing, and execution would continue with a restart of the outer while loop... but that would mean the loop would also execute the ProcessBrokerMessages() function over and over even though it's already running from the invocation in the previous loop, which I don't want.
As far as I know this is not what would happen, though I only "know" that because I've read something along those lines. I don't really understand it.
Arguably the existing flow of control (ie, without the async call) is OK... if config changes affect ProcessBrokerMessages() function (which they can) then the config can't be changed while the function is running anyway. But that seems like it's a point specific to this particular example. I can imagine a case where config changes are changing something else that the thread does, unrelated to the ProcessBrokerMessages() call.
Can someone improve my understanding here? What's the right way to have
a block of code which loops over multiple statements
where one (or some) but not all of those statements are asynchronous
and the async operation should only ever be executing once at a time
but execution should keep looping through the rest of the statements while the single instance of the async operation runs
and the async method should be called again in the loop if the previous invocation has completed
It seems like I could use a BackgroundWorker to run the receive statement, which flips a flag when its job is done, but it also seems weird to me to create a thread specifically for processing the external resource and then, within that thread, create a BackgroundWorker to actually do that job.
You could use a CancelationToken. Most async functions accept one as a parameter, and they cancel the call (the returned Task actually) if the token is signaled. SqlCommand.ExecuteReaderAsync (which you're likely using to issue the WAITFOR RECEIVE is no different. So:
Have a cancellation token passed to the 'execution' thread.
The settings monitor (the one responding to IPC) also has a reference to the token
When a config change occurs, the monitoring makes the config change and then signals the token
the execution thread aborts any pending WAITFOR (or any pending processing in the message processing loop actually, you should use the cancellation token everywhere). any transaction is aborted and rolled back
restart the execution thread, with new cancellation token. It will use the new config
So in this particular case I decided to go with a simpler shared state solution. This is of course a less sound solution in principle, but since there's not a lot of shared state involved, and since the overall application isn't very complicated, it seemed forgivable.
My implementation here is to use locking, but have writes to the config from the service main thread wrapped up in a Task.Run(). The reader doesn't bother with a Task since the reader is already in its own thread.
I'm using the Azure Service Bus SubscriptionClient.OnMessage method; configured to process up to 5 messages concurrently.
Within the code I need to wait for all messages to finish processing before I can continue (to properly shutdown an Azure Worker Role). How do I do this?
Will SubscriptionClient.Close() block until all messages have finished processing?
Calling Close on SubscriptionClient or QueueClient will not block. Calling Close closes off the entity immediately as far as I can tell. I tested quickly just using the Worker Role With Service Bus Queue project template that shipped with Windows Azure SDK 2.0. I added a thread sleep for many seconds in the message process action and then shut down the role while it was running. I saw the Close method get called while the messages were processing in their thread sleep but it certainly did not wait for the for message processing to complete, the role simple closed down.
To handle this gracefully you'll need to do the same thing we did when dealing with any worker role that was processing messages (Service Bus, Azure Storage queue or anything else): keep track of what is being worked on and shut down when it is complete. There are several ways to deal with that but all of them are manual and made messy in this case because of the multiple threads involved.
Given the way that OnMessage works you'll need to add something in the action that looks to see if the role has been told to shutdown, and if so, to not do any processing. The problem is, when the OnMessage action is executed it HAS a message already. You'd probably need to abandon the message but not exit the OnMessage action, otherwise it will keep getting a message if there are ones in the queue. You can't simply abandon the message and let the execution leave the action because then the system will be handed another message (possibly the same one) and several threads doing this may cause messages to get too many dequeue counts and get dead lettered. Also, you can't call Close on the SubscriptionClient or QueueClient, which would stop the receive loop internally, because once you call close any of the outstanding message processing will throw an exception when .Complete, .Abandon, etc. is called on the message because the message entity is now closed. This means you can't stop the incoming messages easily.
The main issue here is because you are using the OnMessage and setting up the concurrent message handling by setting the MaxConcurrentCalls on the OnMessageOptions, which means the code that starts and manages the threads is buried in the QueueClient and SubscriptionClient and you don't have control over that. You don't have a way to reduce the count of threads, or stop the threads individually, etc. You'll need to create a way to put the OnMessage action threads into a state where they are aware that the system is being told to shut down and then complete their message and not exit the action in order for them to not continuously be assigned new messages. This means you'll likely need to also set the MessageOptions to not use autocomplete and manually call complete in your OnMessage action.
Having to do all of this may severely reduce the actual benefit of using the OnMessage helper. Behind the scenes OnMessage is simply setting up a loop calling receive with the default timeout and handing of messages to another thread to do the action (loose description). So what you get by using the OnMessage approach is away from having to write that handler on your own, but then the problem you are having is because you didn't write that handler on your own you don't have control over those threads. Catch-22. If you really need to stop gracefully you may want to step away from the OnMessage approach, write your own Receive loop with threading and within the main loop stop receiving new messages and wait for all the workers to end.
One option, especially if the messages are idempotent (which means processing them more than once yields the same results... which you should be mindful of anyway) then if they are stopped in mid processing they will simply reappear on the queue to be processed by another instance later. If the work itself isn't resource intensive and the operations are idempotent then this really can be an option. No different than when an instance might fail due to hardware failure or other issues. Sure, it's not graceful or elegant, but it certainly removes all the complexity I've mentioned and is still something that can happen anyway due to other failures.
Note that the OnStop is called when an instance is told to shut down. You've got 5 minutes you can delay this until the fabric just shuts it off, so if your messages take longer than five minutes to process it won't really matter if you attempt to shut down gracefully or not, some will be cut off during processing.
You can tweak OnMessageAsync to wait for processing of messages to complete, and block new messages from beginning to be processed:
Here is the implementation:
_subscriptionClient.OnMessageAsync(async message =>
{
if (_stopRequested)
{
// Block processing of new messages. We want to wait for old messages to complete and exit.
await Task.Delay(_waitForExecutionCompletionTimeout);
}
else
{
try
{
// Track executing messages
_activeTaskCollection[message.MessageId] = message;
await messageHandler(message);
await message.CompleteAsync();
}
catch (Exception e)
{
// handle error by disposing or doing nothing to force a retry
}
finally
{
BrokeredMessage savedMessage;
if (!_activeTaskCollection.TryRemove(message.MessageId, out savedMessage))
{
_logger.LogWarning("Attempt to remove message id {0} failed.", savedMessage.MessageId);
}
}
}
}, onMessageOptions);
And an implementation of Stop that waits for completion:
public async Task Stop()
{
_stopRequested = true;
DateTime startWaitTime = DateTime.UtcNow;
while (DateTime.UtcNow - startWaitTime < _waitForExecutionCompletionTimeout && _activeTaskCollection.Count > 0)
{
await Task.Delay(_waitForExecutionCompletionSleepBetweenIterations);
}
await _subscriptionClient.CloseAsync();
}
Note that _activeTaskCollection is a ConcurrentDictionary (we can also use a counter with interlock to count the number of in progress messages, but using a dictionary allows you to investigate what happend easily in case of errors.
It's known that, in cases when one needs comunicate between UI thread and working thread, an hidden window must be created because of thread safety(handle reconstruction).
For exemplify:
Form1 has N dynamicaly created TProgressBar instances with the same name of a background running .
Is always garanteed that WM_REFRESH will only be called inside Task Thread.
Form1 has H : THandle property that allocates the following procedure:
procedure RefreshStat(var Message: TMessage); message WM_REFRESH;
Inside RefreshStat, in cases when there is only 1 background thread I could easily use L and W parameter to map Task Id and position.
I don't know if the title says what I want to know, but let's imagine if we have an application that has multiple background tasks running.
In my case I use TProgressBar to report progress the done.
Does AllocateHwnd garantee that all messages arrives with no race condition the hidden window?
What happens if two or more tasks post the message at the same time?
If this needs to be controled manually, I wonder if there is something else to do besides creating another message loop system in the custom message.
I hope the question is clear enough.
The message queue associated with a thread is a threadsafe queue. Both synchronous and asynchronous messages from multiple other thread are delivered safely no harmful date races. There is no need for any external synchronization when calling the Windows message API functions like SendMessage and PostMessage.
If two threads post or send messages to the same window at the same time, then there is no guarantee as to which message will be processed first. This is what is known as a benign race condition. If you want one message to be processed before the other then you must impose an ordering.