Today I was playing around with function traits. Though the example I show below might not practically be very useful, I do wonder why it doesn't compile.
pub fn do_something(o: &(dyn Other + 'static)) {
}
trait Other {
fn do_something_other(&self);
}
impl<A> Other for dyn Fn(A) {
fn do_something_other(&self) {
do_something(self);
}
}
Here I implement a trait for a function type. This function type is generic over it's parameter. This means that if you were to do it like this:
pub fn do_something(o: &(dyn Other + 'static)) {
}
trait Other {
fn do_something_other(&self);
}
impl<F, A> Other for F where F: (Fn(A)) + 'static {
fn do_something_other(&self) {
do_something(self);
}
}
you get an error stating a type parameter is unconstrained.
I get this and don't believe it's possible to do it with generics. But the dynamic approach, why doesn't it work? It gives the following error:
I don't understand this error. It states I pass a Fn(A) -> (), which doesn't implement Other. However, this error occurs literally in the implementation of Other. How can it not be implemented here?
My first thought was because each closure is its own type. If it has to do with this, I find the error very weird.
The first construction fails because you cannot convert a &dyn A into a &dyn B, even when implementing B for dyn A.
trait A {}
trait B {
fn do_thing(&self);
}
impl B for dyn A {
fn do_thing(&self) {
let b: &dyn B = self;
}
}
error[E0308]: mismatched types
--> src/lib.rs:9:25
|
9 | let b: &dyn B = self;
| ------ ^^^^ expected trait `B`, found trait `A`
| |
| expected due to this
|
= note: expected reference `&dyn B`
found reference `&(dyn A + 'static)`
Well, you can convert traits but only with help from the source trait. But since in this case the source is Fn, that's not a route.
The second construction fails because Rust won't let you implement traits that can conflict. Trying to implement B for a type that implements A<_> will automatically be rejected because types can have multiple implementations of A<_>.
trait A<T> {}
trait B {
fn do_thing(&self);
}
impl<T, U> B for T where T: A<U> {
fn do_thing(&self) {}
}
error[E0207]: the type parameter `U` is not constrained by the impl trait, self type, or predicates
--> src/lib.rs:7:9
|
7 | impl<T, U> B for T where T: A<U> {
| ^ unconstrained type parameter
Regarding Fns in particular, its somewhat hard to tell since usually function objects only implement a single Fn trait. However, the keyword is usually since you can enable a feature on nightly to do just that. And the trait system usually doesn't play favorites.
So what can you do? Well the first method is still functional, just you have to keep the implementation within the trait. You can use the second method if you use a concrete types for the function arguments.
You can conceivably implement Other for &dyn Fn(_) (implementing it on the reference and not the object itself). But that's not particularly convenient with how Fn objects are usually used.
pub fn do_something(o: &dyn Other) {}
trait Other {
fn do_something_other(&self);
}
impl<A> Other for &dyn Fn(A) {
fn do_something_other(&self) {
do_something(self);
}
}
fn main() {
// THIS WORKS
let closure: &dyn Fn(_) = &|x: i32| println!("x: {}", x);
closure.do_something_other();
// THIS DOESN'T WORK
// let closure = |x: i32| println!("x: {}", x);
// closure.do_something_other();
}
Another option would be to make the Other trait generic in order to constrain A, but that of course depends on how its designed to be used.
Related
I have a trait Atom that has many associated types, of which one is an owned version OP and the other is a borrow version O of essentially the same data. I have a function to_pow_view that creates a view from an owned version and I have an equality operator.
Below is an attempt:
pub trait Atom: PartialEq {
// variants truncated for this example
type P<'a>: Pow<'a, R = Self>;
type OP: OwnedPow<R = Self>;
}
pub trait Pow<'a>: Clone + PartialEq {
type R: Atom;
}
#[derive(Debug, Copy, Clone)]
pub enum AtomView<'a, R: Atom> {
Pow(R::P<'a>),
}
#[derive(Debug, Copy, Clone, PartialEq)]
pub enum OwnedAtom<R: Atom> {
Pow(R::OP),
}
pub trait OwnedPow {
type R: Atom;
fn some_mutable_fn(&mut self);
fn to_pow_view<'a>(&'a self) -> <Self::R as Atom>::P<'a>;
// compiler said I should add 'a: 'b
fn test<'a: 'b, 'b>(&'a mut self, other: <Self::R as Atom>::P<'b>) {
if self.to_pow_view().eq(&other) {
self.some_mutable_fn();
}
}
}
impl<R: Atom> OwnedAtom<R> {
// compiler said I should add 'a: 'b, why?
pub fn eq<'a: 'b, 'b>(&'a self, other: AtomView<'b, R>) -> bool {
let a: AtomView<'_, R> = match self {
OwnedAtom::Pow(p) => {
let pp = p.to_pow_view();
AtomView::Pow(pp)
}
};
match (&a, &other) {
(AtomView::Pow(l0), AtomView::Pow(r0)) => l0 == r0,
}
}
}
// implementation
#[derive(Debug, Copy, Clone, PartialEq)]
struct Rep {}
impl Atom for Rep {
type P<'a> = PowD<'a>;
type OP = OwnedPowD;
}
#[derive(Debug, Copy, Clone, PartialEq)]
struct PowD<'a> {
data: &'a [u8],
}
impl<'a> Pow<'a> for PowD<'a> {
type R = Rep;
}
struct OwnedPowD {
data: Vec<u8>,
}
impl OwnedPow for OwnedPowD {
type R = Rep;
fn some_mutable_fn(&mut self) {
todo!()
}
fn to_pow_view<'a>(&'a self) -> <Self::R as Atom>::P<'a> {
PowD { data: &self.data }
}
}
fn main() {}
This code gives the error:
27 | fn test<'a: 'b, 'b>(&'a mut self, other: <Self::R as Atom>::P<'b>) {
| -- lifetime `'b` defined here
28 | if self.to_pow_view().eq(&other) {
| ------------------
| |
| immutable borrow occurs here
| argument requires that `*self` is borrowed for `'b`
29 | self.some_mutable_fn();
| ^^^^^^^^^^^^^^^^^^^^^^ mutable borrow occurs here
I expect this to work, since the immutable borrow should be dropped right after the eq function evaluates.
Something in the setting of the lifetimes is wrong in this code, already in the equality function eq: I would expect that there is no relation between 'a and 'b; they should just live long enough to do the comparison. However, the compiler tells me that I should add 'a: 'b and I do not understand why. The same thing happened for the function test.
These problems lead me to believe that the lifetimes in to_pow_view are wrong, but no modification I tried made it work (except for removing the 'a lifetime on &'a self, but then the OwnedPowD does not compile anymore).
Link to playground
Can someone help understand what is going on?
Here's the point: you constrained Pow to be PartialEq. However, PartialEq is PartialEq<Self>. In other words, Pow<'a> only implements PartialEq<Pow<'a>> for the same 'a.
This is usually the case for any type with lifetime and PartialEq, so why does it always work but not here?
It usually works because if we compare T<'a> == T<'b>, the compiler can shrink the lifetimes to the shortest of the two and compare that.
However, Pow is a trait. Traits are invariant over their lifetime, in other words, it must stay exactly as is, not longer nor shorter. This is because they may be used with invariant types, for example Cell<&'a i32>. Here's an example of how it could be exploited if this was allowed:
use std::cell::Cell;
struct Evil<'a> {
v: Cell<&'a i32>,
}
impl PartialEq for Evil<'_> {
fn eq(&self, other: &Self) -> bool {
// We asserted the lifetimes are the same, so we can do that.
self.v.set(other.v.get());
false
}
}
fn main() {
let foo = Evil { v: Cell::new(&123) };
{
let has_short_lifetime = 456;
_ = foo == Evil { v: Cell::new(&has_short_lifetime) };
}
// Now `foo` contains a dangling reference to `has_short_lifetime`!
dbg!(foo.v.get());
}
The above code does not compile, because Evil is invariant over 'a, but if it would, it would contain UB in safe code. For that reason, traits, that may contain types such as Evil, are also invariant over their lifetimes.
Because of that, the compiler cannot shrink the lifetime of other. It can shrink the lifetime of self.to_pow_view() (in test(), eq() is similar), because it doesn't really shrink it, it just picks a shorter lifetime for to_pow_view()'s self. But because PartialEq is only implemented for types with the same lifetime, it means that the Pow resulting from self.to_pow_view() must have the same lifetime of other. Because of that, (a) 'a must be greater than or equal to 'b, so we can pick 'b out of it, and (b) by comparing, we borrow self for potentially whole 'a, because it may be that 'a == 'b and therefore the comparison borrows self for 'a, so it is still borrowed immutably while we borrow it mutably for some_mutable_fn().
Once we understood the problem, we can think about the solution. Either we require that Pow is covariant over 'a (can be shrinked), or we require that it implements PartialEq<Pow<'b>> for any lifetime 'b. The first is impossible in Rust, but the second is possible:
pub trait Pow<'a>: Clone + for<'b> PartialEq<<Self::R as Atom>::P<'b>> {
type R: Atom;
}
This triggers an error, because the automatically-derived PartialEq does not satisfy this requirement:
error: implementation of `PartialEq` is not general enough
--> src/main.rs:73:10
|
73 | impl<'a> Pow<'a> for PowD<'a> {
| ^^^^^^^ implementation of `PartialEq` is not general enough
|
= note: `PartialEq<PowD<'0>>` would have to be implemented for the type `PowD<'a>`, for any lifetime `'0`...
= note: ...but `PartialEq` is actually implemented for the type `PowD<'1>`, for some specific lifetime `'1`
So we need to implement PartialEq manually:
impl<'a, 'b> PartialEq<PowD<'b>> for PowD<'a> {
fn eq(&self, other: &PowD<'b>) -> bool {
self.data == other.data
}
}
And now it works.
I have a trait:
trait Foo {
fn bar(&self) -> Cow<str>;
}
And I want to implement it for any type that implements Deref with a target of a type that implements Foo. Basically:
impl<T: Foo, D: std::ops::Deref<Target = T>> Foo for D {
fn bar(&self) -> Cow<str> {
<T as Foo>::bar(std::ops::Deref::deref(self))
}
}
Unfortunately, this gives the error the parameter type T may not live long enough.
My understanding is that T could have a reference within it that has a short lifetime, and the lifetime bound of the return value of Cow<str> is linked to the lifetime of &self due to lifetime elision, which would cause problems.
I'm not sure how I can fix this, since I'm not able to bound any of the lifetimes in bar. I can try to make sure T lives as long as &self, but this doesn't work.
impl<'a, T: Foo + 'a, D: std::ops::Deref<Target = T>> Foo for D {
fn bar(&'a self) -> Cow<'a, str> {
<T as Foo>::bar(std::ops::Deref::deref(self))
}
}
I get the error method not compatible with trait since the lifetimes don't match the trait defenition anymore. I've tried all sorts of different ways of adding lifetime bounds and I always get one of those two errors.
I am able to implement Foo for a specific type that implements Deref:
impl<T: Foo> Foo for Box<T> {
fn bar(&self) -> Cow<str> {
<T as Foo>::bar(self)
}
}
I'm not sure why that works but the original example doesn't.
The Box version works because of the deref coercion the compiler will do when it sees a reference and expects a different reference.
You can use the same mechanic when using a generic implementor of Deref to ensure that it Derefs to an owned type you can simply add a 'static lifetime bound on T like this:
impl<T: Foo + 'static, D: std::ops::Deref<Target = T>> Foo for D {
fn bar(&self) -> Cow<str> {
<T as Foo>::bar(self)
}
}
playground
Note: there is rarely a need to call methods of std::ops traits directly, they're all just the methods behind Rusts operators, deref for example is the method behind unary *
Update:
Since there is an additional requirement that T might not be static we have to thread through the lifetime like you tried in your second example, like the error you're getting suggest you have to adjust the trait to take a lifetime as well:
use std::borrow::Cow;
trait Foo<'a> {
fn bar(&self) -> Cow<'a, str>;
}
impl<'a, T: Foo<'a>, D: std::ops::Deref<Target = T>> Foo<'a> for D {
fn bar(&self) -> Cow<'a, str> {
<T as Foo>::bar(self)
}
}
struct S<'a> {
val: &'a str,
}
impl<'a> Foo<'a> for S<'a> {
fn bar(&self) -> Cow<'a, str> {
todo!()
}
}
fn main() {
let val = String::from("test");
let s = S { val: &val }; // error: `val` does not live long enough
let b = Box::new(s);
let cow = Foo::bar(&b); // argument requires that `val` is borrowed for `'static`
}
Basically I'm trying to make a trait that indicates the ability to be converted into a 2D ndarray aka ndarray::Array2:
trait Into2DArray{
fn to_array(&self) -> Array2<f64>;
}
I would like to do this by expanding the existing AsArray trait, but Rust forbids me from implementing a third party trait for a third party struct (polars::DataFrame) for some esoteric reason, so instead I have to make my own trait for this.
Anyway, this works well for polars::DataFrame:
impl Into2DArray for DataFrame {
fn to_array(&self) -> Array2<f64> {
return self.to_array();
}
}
However, I also want to implement this for anything that is already convertable into a 2D array, so I implement this trait for the AsArray trait mentioned above:
impl Into2DArray for AsArray<'_, f64, Ix2> {
fn to_array(&self) -> Array2<f64> {
return self.into();
}
}
However the compiler gives me grief for this:
|
26 | impl Into2DArray for AsArray<'_, f64, Ix2> {
| ^^^^^^^^^^^^^^^^^^^^^ `AsArray` cannot be made into an object
|
= note: the trait cannot be made into an object because it requires `Self: Sized`
= note: for a trait to be "object safe" it needs to allow building a vtable to allow the call to be resolvable dynamically; for more information visit <https://doc.rust-lang.org/reference/items/traits.html#object-safety>
I understand that has something to do with object safety but I thought I had fulfilled all the criteria mentioned on that page, namely the trait doesn't return Self, and all the generic parameters of AsArray are specified.
What is going wrong, and how can I fix it?
What you were trying to do is implementing the Into2DArray trait for the AsArray dynamic trait object. There should have been a warning of using AsArray without dyn anyway.
But this is not what you actually want. You want to implement it for any type that implements AsArray. Just like you did in your comment.
It is important to know the difference between these two things:
trait NeedThis {
fn can_be_called_by_the_impl(&self) {}
}
trait ToDoThis {
fn example(&self);
}
impl ToDoThis for dyn NeedThis {
fn example(&self) {
self.can_be_called_by_the_impl()
}
}
impl NeedThis for u8 {}
fn main() {
let num: u8 = 0;
// num.example(); // doesn't work because ToDoThis is not implemented for u8
let num_as_trait_obj: &dyn NeedThis = &0_u8 as &dyn NeedThis;
num_as_trait_obj.example(); // works because this time it is a trait object
}
trait NeedThis {
fn can_be_called_by_the_impl(&self) {}
}
trait ToDoThis {
fn example(&self);
}
// removing ?Sized would make it the same as T: NeedThis + Sized
impl<T: NeedThis + ?Sized> ToDoThis for T {
fn example(&self) {
self.can_be_called_by_the_impl()
}
}
impl NeedThis for u8 {}
fn main() {
let num: u8 = 0_u8;
num.example(); // works because we implemented it for all types that implement NeedThis
let num_as_trait_obj: &dyn NeedThis = &0_u8 as &dyn NeedThis;
num_as_trait_obj.example(); // works because dyn NeedThis also implements NeedThis.
// This is only true because we added ?Sized to the bounds of the impl block.
// Otherwise it doesn't work because dyn NeedThis is not actually Sized.
// And a Sized bound is implied by default.
}
struct Response {}
struct PlayResponse(Response);
struct DescribeResponse(Response);
impl From<Response> for PlayResponse {
fn from(response: Response) -> Self {
PlayResponse(response)
}
}
enum RtspState {
Init,
Playing,
}
struct RtspMachine {
state: RtspState
}
pub trait OnEvent<T> {
fn on_event(&mut self, event: &T) -> std::result::Result<(), ()>;
}
impl OnEvent<PlayResponse> for RtspMachine {
fn on_event(&mut self, event: &PlayResponse) -> std::result::Result<(), ()> {
self.state = RtspState::Playing;
Ok(())
}
}
fn do_something<T: OnEvent<T>>() where RtspMachine: OnEvent<T>, T: From<Response>{
let mut rtsp_machine = RtspMachine{state: RtspState::Init};
rtsp_machine.on_event(&T::from(Response{}));
rtsp_machine.on_event(&PlayResponse::from(Response{}));
}
On the do_something above, we require where RtspMachine: OnEvent<T>, T: From<Response>.
Note that RtspMachine: OnEvent<PlayResponse> and PlayResponse: From<Response>. I should be able to do rtsp_machine.on_event(&PlayResponse::from(Response{}));, but it only works for the version with T.:
Compiling playground v0.0.1 (/playground)
error[E0308]: mismatched types
--> src/lib.rs:36:27
|
33 | fn do_something<T: OnEvent<T>>() where RtspMachine: OnEvent<T>, T: From<Response>{
| - this type parameter
...
36 | rtsp_machine.on_event(&PlayResponse::from(Response{}));
| ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ expected type parameter `T`, found struct `PlayResponse`
|
= note: expected reference `&T`
found reference `&PlayResponse`
Rust playground
I know that
fn do_something<T>() where
RtspMachine: OnEvent<T> + OnEvent<PlayResponse>,
T: From<Response>
would work but I have lots of T that I wanted to use the specific type instead of generic T, so I can't just put them all on the where like that.
This is a known problem with the compiler's method resolution in the presence of trait bounds (#24066, #38071). Changing your method call
rtsp_machine.on_event(&PlayResponse::from(Response{}));
to the explicit function call form
OnEvent::<PlayResponse>::on_event(
&mut rtsp_machine, &PlayResponse::from(Response{}));
will allow the code to compile. Apparently, in the version that doesn't work, method resolution is looking only at the OnEvent<T> trait that's mentioned in where, even though OnEvent<PlayResponse> also exists.
I don't know if there's a more elegant solution, but perhaps the above will be adequate for your problem — at least it means the extra syntax is local to the call site.
I have this trait and simple structure:
use std::path::{Path, PathBuf};
trait Foo {
type Item: AsRef<Path>;
type Iter: Iterator<Item = Self::Item>;
fn get(&self) -> Self::Iter;
}
struct Bar {
v: Vec<PathBuf>,
}
I would like to implement the Foo trait for Bar:
impl Foo for Bar {
type Item = PathBuf;
type Iter = std::slice::Iter<PathBuf>;
fn get(&self) -> Self::Iter {
self.v.iter()
}
}
However I'm getting this error:
error[E0106]: missing lifetime specifier
--> src/main.rs:16:17
|
16 | type Iter = std::slice::Iter<PathBuf>;
| ^^^^^^^^^^^^^^^^^^^^^^^^^ expected lifetime parameter
I found no way to specify lifetimes inside that associated type. In particular I want to express that the iterator cannot outlive the self lifetime.
How do I have to modify the Foo trait, or the Bar trait implementation, to make this work?
Rust playground
There are a two solutions to your problem. Let's start with the simplest one:
Add a lifetime to your trait
trait Foo<'a> {
type Item: AsRef<Path>;
type Iter: Iterator<Item = Self::Item>;
fn get(&'a self) -> Self::Iter;
}
This requires you to annotate the lifetime everywhere you use the trait. When you implement the trait, you need to do a generic implementation:
impl<'a> Foo<'a> for Bar {
type Item = &'a PathBuf;
type Iter = std::slice::Iter<'a, PathBuf>;
fn get(&'a self) -> Self::Iter {
self.v.iter()
}
}
When you require the trait for a generic argument, you also need to make sure that any references to your trait object have the same lifetime:
fn fooget<'a, T: Foo<'a>>(foo: &'a T) {}
Implement the trait for a reference to your type
Instead of implementing the trait for your type, implement it for a reference to your type. The trait never needs to know anything about lifetimes this way.
The trait function then must take its argument by value. In your case you will implement the trait for a reference:
trait Foo {
type Item: AsRef<Path>;
type Iter: Iterator<Item = Self::Item>;
fn get(self) -> Self::Iter;
}
impl<'a> Foo for &'a Bar {
type Item = &'a PathBuf;
type Iter = std::slice::Iter<'a, PathBuf>;
fn get(self) -> Self::Iter {
self.v.iter()
}
}
Your fooget function now simply becomes
fn fooget<T: Foo>(foo: T) {}
The problem with this is that the fooget function doesn't know T is in reality a &Bar. When you call the get function, you are actually moving out of the foo variable. You don't move out of the object, you just move the reference. If your fooget function tries to call get twice, the function won't compile.
If you want your fooget function to only accept arguments where the Foo trait is implemented for references, you need to explicitly state this bound:
fn fooget_twice<'a, T>(foo: &'a T)
where
&'a T: Foo,
{}
The where clause makes sure that you only call this function for references where Foo was implemented for the reference instead of the type. It may also be implemented for both.
Technically, the compiler could automatically infer the lifetime in fooget_twice so you could write it as
fn fooget_twice<T>(foo: &T)
where
&T: Foo,
{}
but it's not smart enough yet.
For more complicated cases, you can use a Rust feature which is not yet implemented: Generic Associated Types (GATs). Work for that is being tracked in issue 44265.
Use a wrapper type
If the trait and all its implementations are defined in one crate, a helper type can be useful:
trait Foo {
fn get<'a>(&'a self) -> IterableFoo<'a, Self> {
IterableFoo(self)
}
}
struct IterableFoo<'a, T: ?Sized + Foo>(pub &'a T);
For a concrete type that implements Foo, implement the iterator conversion on the IterableFoo wrapping it:
impl Foo for Bar {}
impl<'a> IntoIterator for IterableFoo<'a, Bar> {
type Item = &'a PathBuf;
type IntoIter = std::slice::Iter<'a, PathBuf>;
fn into_iter(self) -> Self::IntoIter {
self.0.v.iter()
}
}
This solution does not allow implementations in a different crate. Another disadvantage is that an IntoIterator bound cannot be encoded into the definition of the trait, so it will need to be specified as an additional (and higher-rank) bound for generic code that wants to iterate over the result of Foo::get:
fn use_foo_get<T>(foo: &T)
where
T: Foo,
for<'a> IterableFoo<'a, T>: IntoIterator,
for<'a> <IterableFoo<'a, T> as IntoIterator>::Item: AsRef<Path>
{
for p in foo.get() {
println!("{}", p.as_ref().to_string_lossy());
}
}
Associated type for an internal object providing desired functionality
The trait can define an associated type that gives access to a part of the object that, bound in a reference, provides the necessary access traits.
trait Foo {
type Iterable: ?Sized;
fn get(&self) -> &Self::Iterable;
}
This requires that any implementation type contains a part that can be so exposed:
impl Foo for Bar {
type Iterable = [PathBuf];
fn get(&self) -> &Self::Iterable {
&self.v
}
}
Put bounds on the reference to the associated type in generic code that uses the the result of get:
fn use_foo_get<'a, T>(foo: &'a T)
where
T: Foo,
&'a T::Iterable: IntoIterator,
<&'a T::Iterable as IntoIterator>::Item: AsRef<Path>
{
for p in foo.get() {
println!("{}", p.as_ref().to_string_lossy());
}
}
This solution permits implementations outside of the trait definition crate.
The bound work at generic use sites is as annoying as with the previous solution.
An implementing type may need an internal shell struct with the only purpose of providing the associated type, in case when the use-site bounds are not as readily satisfied as with Vec and IntoIterator in the example discussed.
In future, you'll want an associated type constructor for your lifetime 'a but Rust does not support that yet. See RFC 1598